+ All Categories
Home > Documents > Granitoid magmatism of the NW Bohemian massif revealed: gravity data, composition, age relations and...

Granitoid magmatism of the NW Bohemian massif revealed: gravity data, composition, age relations and...

Date post: 25-Aug-2016
Category:
Upload: p
View: 223 times
Download: 5 times
Share this document with a friend
19
W. Siebel ( ) GeoForschungsZentrum, Telegrafenberg D-14473 Potsdam, Germany Fax:#0331 288 1645 E-mail: siebel@gfz-potsdam.de R. Trzebski Institut fu¨r Geologie und Dynamik der Lithospha¨re, Goldschmidtstr. 3, D-37077 Go¨ttingen, Germany G. Stettner Rossteinstr. 8, D-83607 Holzkirchen, Germany L. Hecht Lehrstuhl fu¨r Angewandte Mineralogie und Geochemie, Technische Universita¨t Mu¨nchen, Lichtenbergstr. 4, D-85747 Garching, Germany U. Casten Institut fu¨r Geophysik, Ruhr-Universita¨t, Universita¨tsstr. 150, D-44801 Bochum, Germany A. Ho¨hndorf Bundesanstalt fu¨r Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655 Hannover, Germany P. Mu¨ller Martin-Mu¨ller Str. 16, D-30900 Wedemark, Germany Geol Rundsch (1997) 86, Suppl.: S45S63 ( Springer-Verlag 1997 ORIGINAL PAPER W. Siebel · R. Trzebski · G. Stettner · L. Hecht U. Casten · A. Ho ¨ hndorf · P. Mu ¨ ller Granitoid magmatism of the NW Bohemian massif revealed: gravity data, composition, age relations and phase concept Received: 16 June 1996 / Accepted: 24 November 1996 Abstract The late Variscan granitoids of the NW Bo- hemian massif (northeast Bavaria, west Bohemia) con- stitute four partly contiguous granitoid complexes: Fichtelgebirge, northern Oberpfalz, Waidhaus-Roz- vadov and Bor, incorporating more than 20 intrusive units. Based on gravity data, the granites can be mo- deled as steeply inclined slab- and wedge-like bodies with thicknesses between 2 and 8 km. A rough estimate of the total volume of the granites is approximately 18 000 km3. Within the four areas named above, com- position ranges from less evolved dioritic rocks, known as the redwitzite suite, to highly evolved gran- ites. The redwitzites comprise metaluminous rocks with dominant I type features. These rocks yield aberrantly old RbSr ages (545415 Ma), low initial Sr ratios (0.7060.708) and high and variable e N$ (T) values (1 to 4). SrNd isotopes of the redwitzites show con- tamination trends towards the granites suggesting mix- ing between mantle magma and crustal granitic melts. An older plutonic association (granites of Bor, Leuch- tenberg, Weissenstadt-Marktleuthen, Zainhammer) is mildly peraluminous, displaying features of both I and S type granitoids. These granites are characterized by Lower Carboniferous ages (RbSr, KAr, UPb), low to intermediate initial Sr ratios (0.7070.708) and high e N$ (T) values (2 to 4) which overlap with those of paragneisses from the Zone of Erbendorf-Vohenstrauss (ZEV)and from the western part of the Tepla´ Barran- dian. It is postulated that the older granites were for- med either by partial melting of ZEV or Tepla´ Barrandian crust, or alternatively, of preexisting ma- ture crust contaminated by mantle material. The younger granites are strongly peraluminous and of S type. They yield Upper Carboniferous RbSr and KAr ages and exhibit a range towards high initial Sr ratios (0.7100.720) and low e N$(T) values (4 to 8). Similar values are found in Moldanubian paragneisses and in Saxothuringian metasediments, both of which provide potential sourcerock lithologies for these granites. The age and isotope data discussed herein suggest episodic rather than continuous magmatic activity. From a combination of field and analytical data, a three-stage cycle of granitoid intrusion is proposed: (a) a first phase ( & 350325 Ma) of two contrasting magma types coexisting in a close spatial context, the redwitzites (phase Ia) and the older granites (phase Ib), (b) a second phase with emplacement ages of 315310 Ma comprising all younger granites of the northern Oberpfalz and the Waidhaus-Rozvadov com- plex and (c) a third phase with emplacement ages of 305295 Ma restricted to the Fichtelgebirge. Key words Biotite chemistry · Bohemian massif · Geochemistry · Geochronology · Granitoid magmatism · Gravity data
Transcript
Page 1: Granitoid magmatism of the NW Bohemian massif revealed: gravity data, composition, age relations and phase concept

W. Siebel ( )GeoForschungsZentrum, Telegrafenberg D-14473 Potsdam,GermanyFax:#0331 288 1645E-mail: [email protected]

R. TrzebskiInstitut fur Geologie und Dynamik der Lithosphare,Goldschmidtstr. 3, D-37077 Gottingen, Germany

G. StettnerRossteinstr. 8, D-83607 Holzkirchen, Germany

L. HechtLehrstuhl fur Angewandte Mineralogie und Geochemie,Technische Universitat Munchen,Lichtenbergstr. 4, D-85747 Garching, Germany

U. CastenInstitut fur Geophysik, Ruhr-Universitat, Universitatsstr. 150,D-44801 Bochum, Germany

A. HohndorfBundesanstalt fur Geowissenschaften und Rohstoffe,Stilleweg 2, D-30655 Hannover, Germany

P. MullerMartin-Muller Str. 16, D-30900 Wedemark, Germany

Geol Rundsch (1997) 86, Suppl.:S45—S63 ( Springer-Verlag 1997

ORIGINAL PAPER

W. Siebel · R. Trzebski · G. Stettner · L. HechtU. Casten · A. Hohndorf · P. Muller

Granitoid magmatism of the NW Bohemian massif revealed:gravity data, composition, age relations and phase concept

Received: 16 June 1996 / Accepted: 24 November 1996

Abstract The late Variscan granitoids of the NW Bo-hemian massif (northeast Bavaria, west Bohemia) con-stitute four partly contiguous granitoid complexes:Fichtelgebirge, northern Oberpfalz, Waidhaus-Roz-vadov and Bor, incorporating more than 20 intrusiveunits. Based on gravity data, the granites can be mo-deled as steeply inclined slab- and wedge-like bodieswith thicknesses between 2 and 8 km. A rough estimateof the total volume of the granites is approximately18 000 km3. Within the four areas named above, com-position ranges from less evolved dioritic rocks,known as the redwitzite suite, to highly evolved gran-ites. The redwitzites comprise metaluminous rocks withdominant I type features. These rocks yield aberrantlyold Rb—Sr ages (545—415 Ma), low initial Sr ratios(0.706—0.708) and high and variable e

N$(T)values

(1 to —4). Sr—Nd isotopes of the redwitzites show con-tamination trends towards the granites suggesting mix-ing between mantle magma and crustal granitic melts.An older plutonic association (granites of Bor, Leuch-tenberg, Weissenstadt-Marktleuthen, Zainhammer) ismildly peraluminous, displaying features of both I andS type granitoids. These granites are characterized byLower Carboniferous ages (Rb—Sr, K—Ar, U—Pb), lowto intermediate initial Sr ratios (0.707—0.708) and higheN$(T)

values (—2 to —4) which overlap with those ofparagneisses from the Zone of Erbendorf-Vohenstrauss(ZEV) and from the western part of the Tepla Barran-dian. It is postulated that the older granites were for-med either by partial melting of ZEV or TeplaBarrandian crust, or alternatively, of preexisting ma-ture crust contaminated by mantle material. Theyounger granites are strongly peraluminous and ofS type. They yield Upper Carboniferous Rb—Sr andK—Ar ages and exhibit a range towards high initial Srratios (0.710—0.720) and low e

N$(T)values (—4 to —8).

Similar values are found in Moldanubian paragneissesand in Saxothuringian metasediments, both of whichprovide potential source—rock lithologies for thesegranites.

The age and isotope data discussed herein suggestepisodic rather than continuous magmatic activity.From a combination of field and analytical data, athree-stage cycle of granitoid intrusion is proposed:(a) a first phase (&350—325 Ma) of two contrastingmagma types coexisting in a close spatial context, theredwitzites (phase Ia) and the older granites (phase Ib),(b) a second phase with emplacement ages of315—310 Ma comprising all younger granites of thenorthern Oberpfalz and the Waidhaus-Rozvadov com-plex and (c) a third phase with emplacement ages of305—295 Ma restricted to the Fichtelgebirge.

Key words Biotite chemistry · Bohemian massif ·Geochemistry · Geochronology · Granitoidmagmatism · Gravity data

Page 2: Granitoid magmatism of the NW Bohemian massif revealed: gravity data, composition, age relations and phase concept

Fig. 1 Simplified map ofnortheast Bavaria and westBohemia showing granitoiddistribution. MR Marktredwitzintrusives (redwitzites and G1granite); R-E Reuth-Erbendorfredwitzites; ¼-I Wurz-Ilsenbach redwitzites; G1R G1Reut granite facies; G1S G1 Selbgranite facies; Ba Barnaugranite; Fa Falkenberg granite;Fl Flossenburg granite; FrFriedenfels granite; ¸bLiebenstein granite; ¸eLeuchtenberg granite; MiMitterteich granite; St Steinwaldgranite; CBG cordierite—biotitegranitoids; ROG Rozvadovgranite; KG Kreuzstein (Kr\ ız\ ovykamen) granite; K¸ Kladrubygranite (? pre-Variscan); G2K,G3K Kosseine granites; ¼BSWest Bohemian shear zone

Introduction

Carboniferous granitoids form an integral part of theMid-European Variscides. In northeast Bavaria andwest Bohemia, granitoids outcrop over approximately1 200 km2. They may be conveniently divided into fourcomplexes, each comprising a number of intrusiveunits: (a) Fichtelgebirge, (b) Northern Oberpfalz in-cluding the Steinwald, (c) Waidhaus-Rozvadov and(d) Bor (Fig. 1). The granitoids intruded into threedistinct tectonometamorphic units, namely the Mol-danubian, the Saxothuringian and the Zone of Erben-dorf-Vohenstrauss (ZEV). The Bor granitoids intrudedalong the West Bohemian shear zone, i.e. between theMoldanubian sensu stricto and the western margin ofthe Tepla Barrandian region. All these granitoids havebeen studied by numerous geologists, and a consider-able database is available to clearly identify their geo-physical, geochemical and isotopic characteristics. Fulldetails of the geophysical aspects can be found in Behret al. (1989), Blız\ kovsky et al. (1975, 1985a, b), Bosumet al. (1994), Bucker (1986), Casten (1990, 1994), Gattoand Casten (1989), Ibrmajer et al. (1989), Plaumann(1986, 1988), Trzebski (1997) and Vigneresse and Corn-well (1994). Regional petrographic and geochemicalcharacteristics of the granitoids are discussed in Breiterand Siebel (1995), Fiala (1980), Fischer (1965), Hecht

(1993, 1994a), Hecht et al. (1993, 1994, 1997), Kohler(1970), Madel (1968, 1975), Maier and Stockhert (1992),Richter and Stettner (1979, 1987), Schodlbauer et al.(1995, 1997), Siebel (1993a), S[ temprok (1992), Stettner(1958), Tavakkoli (1985), Tomas (1971), Troll (1968),Vejnar (1960), Vejnar et al. (1969), Voll (1960) andWendt et al. (1986). Isotopic investigations were car-ried out by Besang et al. (1976), Carl and Wendt (1993),Carl et al. (1989), Friese (1990), Hofmann (1992), Holl(1988), Holl et al. (1989), Kohler and Holzl (1996),Kohler and Muller-Sohnius (1976), Kohler et al. (1974,1989), Lenz (1986), Siebel (1993a, b, 1994, 1995a, b),Siebel et al. (1995, 1996), S[ mejkal (1964), Wendt et al.(1986, 1988, 1992, 1994) and Vejnar (1962). This reviewrepresents an assessment of the northeast Bavarian andwest Bohemian granitoids based chiefly on the resultsof the publications cited above. The main goals are toshow (a) that the granitoids can be subdivided intotemporally distinct phases, partly derived from differ-ent sources, and (b) that crustal sources became in-creasingly important during magmatism.

General characteristics and petrography of the granitoids

The relative intrusion sequence of the northeast Bavar-ian and west Bohemian granitoids was first established

S46

Page 3: Granitoid magmatism of the NW Bohemian massif revealed: gravity data, composition, age relations and phase concept

using geological and geochemical relationships (Stet-tner 1958; Fischer 1965; Troll 1968; Tomas 1971; Madel1975; Richter and Stettner 1979, 1987). Based on fieldwork, Fischer (1965) and Troll (1968) deduced that theintermediate redwitzites predate the granites. Combin-ing field and compositional relationships Madel (1975)and Richter and Stettner (1979) argued that the gran-ites of Leuchtenberg and Weissenstadt-Marktleuthen(G1) were older than other granites nearby. Further-more, Vejnar (1962) and Wendt et al. (1988) consideredthe granites of Bor and Zainhammer as early plutons.For the sake of simplicity these four granites are hereinreferred to as older granites to distinguish them fromthe numerous younger plutons.

The granitoids are largely unaffected by late Varis-can tectonic events which involved folding and thesubsequent development of the main faults within andbetween the tectonometamorphic units. Mineral tex-tures that might relate to the Carboniferous deforma-tion are locally developed in the Leuchtenberg and Borgranites (Voll 1960, Krohe et al. 1994, Zulauf 1994).The G1 Reut granite facies crosses the thrust boundaryof the Munchberg massif (Fig. 1), providing evidenceof postkinematic emplacement. The major movementsalong the Erbendorf lineament, which separates Mol-danubian from Saxothuringian crust, predate the em-placement of the Steinwald and Falkenberg granites,both of which crosscut this fault.

The redwitzites comprise multifaceted rock typeswhich range from gabbro to granodiorite, but overall,quartz(monzo)diorite is the most important constitu-ent. Generally, these rocks form relatively small bodiesthat are intimately associated with and crosscut by theolder granites (i.e. Bor, G1, Leuchtenberg, Zainham-mer). Amphibole and biotite are the principal maficphases. Olivine and pyroxene may occur as relict min-erals. Plagioclase composition varies from An

60to

An20

.The older granites comprise coarse-grained por-

phyritic biotite monzogranites and minor grano-diorites, differentiating locally to even-grained,muscovite-rich granites or a sequence of dyke rocks.The Bor pluton consists of early tonalites and quartzdiorites (Bor I), predominantly megacrystic monzo-granites and granodiorites (Bor II) and late vein leuco-monzogranites (Bor III). Petrographic features of theBor I granitoids can be correlated with those of theredwitzites. Hence, in the following sections the Bor-Igranitoids are included in the discussion of the red-witzite suite.

The porphyritic texture of the older granites is for-med by K-feldspar megacrysts which in places showsubparallel flow alignment. Plagioclase compositiongenerally varies from An

30to An

10in early-crystallized

rocks, and from An10

to An2

in rocks crystallized fromthe final melts. Cordierite, altered to pinite, is found inthe Zainhammer granite and is believed to have beenprecipitated from a high-temperature melt (Wendt et al.

1988) or, alternatively, formed by wall-rock assimila-tion (Stettner 1992, p. 117). A magmatic origin was pro-posed for Mn-rich garnet in the Leuchtenberg granite(Siebel 1993a). Different types of mafic to intermediateenclaves become frequent towards the western marginof the G1 and within the G1 Reut granite facies.

The younger granites are heterogeneous, rangingfrom two-mica monzogranites through leucogranitesto geochemically specialized albite—zinnwaldite gran-ites. The rocks are coarse- to fine-grained with hyp-idiomorphic, equigranular and heterogranular textures,the latter containing feldspar megacrysts. With a fewexceptions (Falkenberg, Liebenstein) modal variationwithin the younger granites is limited. Most plutonicunits average 25—35% plagioclase, 20—30% alkali feld-spar and 30—35% quartz. Fractional crystallization ledto a fairly large variation in mineral compositions (seeBiotite geochemistry) and to a gradual increase in themuscovite/biotite ratio in some of these granites. Mi-nor minerals are andalusite, pinite and sillimanite.

According to Stettner (1992), the Falkenberg graniterepresents the central remainder of a sheet-like intru-sion. The northern tongue of the granite is assumed tounderlie Cenozoic sediments of the Mitterteich basinand it may be spatially related to the Marktredwitzintrusions in the north (Fig. 1). The Mitterteich graniteis nested in the central part of this zone, and is thoughtto lie within the porphyritic facies of the Falkenberggranite. The Flossenburg and Barnau granites repres-ent two parts of a coherent intrusional body dipping tothe NE. Both granites show vertical geochemical zona-tion patterns (Tavakkoli 1985). Concentric zonation isa prominent feature in the Steinwald area, where theunits become successively more felsic towards the NWedge (Richter and Stettner 1987). The Kosseine granitesof the Fichtelgebirge are variable-textured rocks. Theycontain different types of enclaves (Schodlbauer et al.1997), high biotite contents and relict minerals (alman-dine-rich garnet, cordierite) suggesting that these rockswere generated in an open magma system involvingcrustal contamination, fractional crystallization and/orrestite unmixing.

Between adjacent granites a development from non-to highly-differentiated granites is well observed (Rich-ter and Stettner 1979, 1987; Tavakkoli 1985). Followingthe succession Falkenberg/Mitterteich, Friedenfels,Steinwald and G2 (‘‘Randgranit’’), G3 (‘‘Kerngranit’’),G4 (Zinngranit), petrographic features argue in favourof multiple emplacement of progressively more felsicmagmas.

Different types of late- and postmagmatic alterationprocesses have been identified within the granites. TheFlossenburg and Steinwald granites show evidence fordecalcification of plagioclase resulting in transforma-tion from monzogranite/leucogranite into two-micaalbite microcline granite (Wendt et al. 1992, 1994). De-silication involving replacement of primary quartz bysericite has been reported by Ernst and von Gehlen (1962)

S47

Page 4: Granitoid magmatism of the NW Bohemian massif revealed: gravity data, composition, age relations and phase concept

Fig. 2 Above: Bouguer gravity map of granitoids from the northernOberpfalz and west Bohemia. Below: gravity map displaying themajor gravity anomalies. The lines in the contour map (above)represent the seismic profiles recorded in the study area. FICH¹

Fichtelgebirge; Kyn Kynz\ vart les granite. (For additional abbrevi-ations see Fig. 1)

from a locality within the Falkenberg granite. A similartype of hydrothermal alteration, which results in theformation of episyenites (LaCroix 1920), is locally de-veloped in some of the Fichtelgebirge granites.

Gravity survey

The gravity method is the most appropriate geophysi-cal method for investigations of the geometry and sub-surface extension of the granites. This method utilizesdensity contrasts between the relatively low-densitygranites and the higher-density metamorphic countryrocks. Thus, the granites are commonly characterizedby marked negative anomalies in the gravity field.

The gravity field of the northern Oberpfalz is shownon the Bouguer map of the Oberpfalz on a scale of1 : 200 000 and isoline spacing of 2 mGal (Plaumann1986), and on the Bouguer map of Germany (southernsheet) on a scale of 1 : 500 000 and isoline spacing of1 mGal (Plaumann 1995). In the Oberpfalz the gravitynetwork was essentially enhanced by reconnaissancegeophysical surveys of the KTB location. Supple-mentary gravity measurements were obtained in thenear vicinity of the KTB drill site, producing a high-resolution Bouguer map of the ISO89 area on a scale of1 : 100 000 and isoline spacing of 0.5 mGal (Bosumet al. 1994; Casten 1990, 1994). Granite-related gravitysurveys in the eastern part of the northern Oberpfalzand westernmost Bohemia by Trzebski (1997) alloweda compilation of the Bouguer maps of the Oberpfalzand western Bohemia on a scale of 1 : 200 000 andisoline spacing of 1 mGal. The gravity maps of theCzech Republic (1 : 200 000 and 1 : 500 000) are basedon work performed mainly by the geophysical survey;Geofyzika-Brno (Ibrmajer 1971; Polansky 1973; Blız\ -kovsky et al. 1975, 1985a, b).

The gravity field of the northern Oberpfalz and westBohemia is composed of three major anomalies (Fig. 2):the gravity high or maximum of the ZEV, the minimumof Tirschenreuth and the prominent maximum of theMarianske Lazne\ complex. The gravity highs reflectthe presence of relatively high-density metamorphicrocks, such as mafic and ultra-mafic rocks, amphi-bolites and associated lithologies (Table 1). Conversely,the composite minimum of Tirschenreuth covers largeparts of the granite exposures, regarded as the mainsource of the negative gravity effect. Consequently, themarked gradients separating the positive and negativeanomalies are caused by the high-density contrasts(*o"0.1—0.3]103 kg/m3) between the granites andthe paragneiss/amphibolite suites. Plaumann (1986) as-sumed that the granites of Falkenberg, Friedenfels andSteinwald in the northern Oberpfalz are responsible forthe gravity low of Tirschenreuth. Detailed analyses ofthe negative anomaly show that the low-density sourceis located east of the Falkenberg and Liebenstein

granites, and thus largely extends below the meta-morphic cover of the Zone of Tirschenreuth-Mahring(Trzebski 1997). Wendt et al. (1994) suggest that theFlossenburg granite forms a sheet descending 5—6 kmtowards the northeast. This granite should thereforecontribute to the negative gravity effect. On the otherhand, in the empirical analysis of the gravity field byTrzebski (1996) the gravity low of Tirschenreuth wasresolved into several local anomalies (the gravity lowsof Barnau, Rozvadov, Waidhaus and Bor) each asso-ciated with distinct granites (Fig. 2).

Gravity modeling of the granites in the northernOberpfalz and west Bohemia yields basal depths be-tween 4 and 8 km, and average depths of 6 km (Bosumet al. 1994; Trzebski 1997; Trzebski et al. 1997). Thebasal depths of the older granites (e.g. Bor, Leuchten-berg) show the lowest thicknesses ((4 km). The geo-metry of the Variscan granites in the northern Ober-pfalz was first estimated by Plaumann (1986) as lacco-lithic bodies with average thicknesses of 4—5 km.Bucker (1986) presented similar estimates of shape,

S48

Page 5: Granitoid magmatism of the NW Bohemian massif revealed: gravity data, composition, age relations and phase concept

Table 1 Densities of the main lithostratigraphic units in northeastBavaria and west Bohemia

Rock unit Lithology Density Reference[]103 kg/m3]

ZEV Gneiss 2.73 Bucker (1986)Saxothuringian Basalt 3.14 Bucker (1986)Permo-Mesozoic Sandstone 2.34 Bucker (1986)Steinwald Granite 2.59 S. Plaumann

(unpublished)Saxothuringian Quartzite 2.64 S. Plaumann

(unpublished)Flossenburg Granite 2.60 S. Plaumann

(unpublished)Falkenberg Granite 2.62 Bucker (1986)ZEV Amphibolite 2.96 Bucker (1986)ZEV Gneiss 2.74 Bucker (1986)Leuchtenberg Granite 2.63 Bucker (1986)Flossenburg Granite 2.62 Bucker (1986)Moldanubian Gneiss 2.72 Bucker (1986)ZEV Amphibolite 2.96 Fuchs (1979)Moldanubian Gneiss 2.70 Fuchs (1979)Steinwald Granite 2.59 Fuchs (1979)Saxothuringian Quartzite 2.64 Fuchs (1979)Bor Granite 2.58 Chlupac\ ova

(1993)Rozvadov Granite 2.61 Chlupac\ ova

(1993)Moldanubian Gneiss 2.705 Chlupac\ ova

(1993)Rozvadov Granite 2.60 Trzebski (1996)Rozvadov Granite 2.59 Trzebski (1996)Barnau Granite 2.61 Trzebski (1996)Flossenburg Granite 2.61 Trzebski (1996)Moldanubian Gneiss 2.69 Trzebski (1996)

Fig. 3 Example of seismic transparency suggesting the subsurfaceextent of the Falkenberg granite along the KTB 8502-line; after finalstack with automatic line drawing (Trzebski 1996)

depth and volume of the granites and emphasized flat,sheet-like bodies dipping slightly to the east. Signifi-cantly larger granite volumes were postulated by Behret al. (1989) and Behr (1992) where, for instance, thewestern part of the Falkenberg granite extends todepths of more than 6 km. Although the actual shapesof the granites can rarely be modeled without ambi-guity, the gravity data provide a picture of wedge-likegranite bodies standing vertically in the crust. The vol-umes of the present granite bodies in the northern Ober-pfalz and west Bohemia were calculated on the basis ofthe spatial gravity modeling. Volumes of more than15 000 km3 were obtained (see also Trzebski et al. 1997).

The first interpretation of the gravity anomalies re-lated to the Fichtelgebirge was presented by Plaumann(1986, 1988). In the Czech part of the Fichtelgebirge, thedata were based on the gravity map by Polansky andS[ kvor (1975). In 1989 detailed gravity surveys, per-formed by J. L. Vigneresse in collaboration with theUniversity of Munich, covered the Fichtelgebirge gran-ites in the German part providing a station density ofone per square kilometre (Vigneresse and Cornwell1994; Hecht et al. 1997). In contrast to Plaumann(1986), the Bouguer anomaly data were processedwith a reduction density of 2.70]103 kg/m3, instead of2.67]103 kg/m3. The densities of the granites appear

relatively high (2.65]103 kg/m3) compared with thegranites of the northern Oberpfalz (2.61]103 kg/m3).The two major negative anomalies, trending NE—SWand NW—SE, correspond to the older granite of Weis-senstadt-Marktleuthen (G1) and to the younger gran-ites (G2 to G4), respectively, with magnitudes rangingfrom 26 to —36 mGal. The elongation of the G1 graniteanomaly suggests an affinity with the marked gravitylow of the Erzgebirge. In comparison, the anomalousstructure of the G2 to G4 granites suggests a relationwith the Falkenberg, Friedenfels and Steinwald gran-ites to the southeast. Gravity modeling of the G1 gran-ite results in a relatively flat shape with thicknesses of2—3 km in the central part and with a pronounceddeepening towards the eastern flanks to a depth of at least6 km. The G2 to G4 granites have steep flanks extend-ing to a depth of 6—8 km (Hecht et al. 1997). Volumeestimates, including the Czech part, amount to approx-imately 3000 km3 (J. L. Vigneresse, pers. commun.).

Seismic survey

Subsurface three-dimensional modeling of granites us-ing seismic data is hampered because the approachonly roughly resolves interface levels between granitesand surrounding country rocks indicated by higherreflective horizons. Due to their low impedance con-trasts, granitic intrusions are essentially transparent toseismic waves (Jurdy and Phinney 1983; Pratt et al.1985; Matthews 1986).

First geological interpretations of the KTB seismiclines by Weber and Vollbrecht (1989), Vollbrechtet al. (1989) and Franke (1989) presented a quanti-tative line-drawing model of structural units in thecrust of the Oberpfalz. Subsurface shapes of thegranitic bodies were deduced from the contours ofseismic transparency zones (Fig. 3). This approach

S49

Page 6: Granitoid magmatism of the NW Bohemian massif revealed: gravity data, composition, age relations and phase concept

0.705

0.710

0.715

0.720

0.725

290300310320330340350

T (Ma)

G4

G2K

G3K

Steinwald

CBGRozvadov

G1a)

b)

Leuchtenberg

Bor

Friedenfels

G2G3

Mitterteich

Falken-berg

( Sr/ Sr)87 86i Younger Granites

Older Granites

Flossen-bürg

G2 in G4

Bärnau

Fig. 4 Rb—Sr dating results of the Variscan granites from northeastBavaria and west Bohemia. The apparent age is plotted against theinitial 87Sr/86Sr ratio with the correlated errors shown as an ellipse.Arrow a: the low initial 87Sr/86Sr ratio of the Friedenfels granite isdifficult to reconcile with the otherwise highly evolved character ofthis granite and its intermediate geochemical position between Fal-kenberg and Steinwald; arrow b: the K—Ar results suggest that thecordierite—biotite granitoids are older than indicated by the appar-ent Rb—Sr whole-rock age (see Fig. 5). Sources — Bor (including BorII monzogranites and granodiorites), cordierite—biotite granitoids,Rozvadov granite: Siebel et al. (1996); Leuchtenberg: Siebel (1995b);G1 (including G1 Selb and G1 Reut granite facies), G2, G2 in G4(inclusions of G2 in G4), G3, G4, G2 and G3 Kosseine: Carl andWendt (1993); Mitterteich: Siebel (1995a); Falkenberg: Wendt et al.(1986); Friedenfels, Steinwald: Wendt et al. (1988, 1992), Barnau,Flossenburg: Wendt et al. (1994)

incorporates only speculative determination of granitebottom depths and thus requires an additional methodto test the lateral extent of the subsurface massdistribution. However, gravity modeling along theseismic KTB/DEKORP profiles by Trzebski (1997)shows that shapes and depth extensions of the granitesestimated from the gravity models are in goodagreement with the contoured seismic transparencyzones.

Intrusion depths and crustal uplift

The granitoids were emplaced as sharply defined bo-dies remote from the zone of magma generation. Mostplutons crop out as NNW- to NW-trending bodies.This general elongation is supposed to reflect deep-seated fracture zones representing the lines of magmainfill. An example for such a zone is the NNW-trendingWest Bohemian shear zone along which several Varis-can granitoids were emplaced (Zulauf 1994; Dorret al. 1996). The granitoids are situated in countryrocks of different metamorphic grades. Contact meta-morphic assemblages around the southern part of theLeuchtenberg granite favour magma emplacement ata depth of approximately 10 km (Okrusch 1971). Thisestimate is in accordance with phengite barometry onsamples of the Falkenberg and Leuchtenberg granites(Maier and Stockhert 1992; Kleemann 1991; Siebel1993a; Zulauf et al. 1997), but it does not hold forall granitoids in this region. Based on analysis ofcontact metamorphic assemblages, Matthes (1951)assumed that the depth of intrusion of the Steinwaldgranite was between 2 and 4 km. As shown for theFichtelgebirge, the older (G1) granites were emplacedat deeper levels than the younger (G2 to G4) granites(Stettner 1958; Richter and Stettner 1979). The G1granite penetrated Cambrian and Ordovician strata atits northern margin suggesting an emplacement level ofless than 10 km. Some of the G2 granites have texturalfeatures suggestive of emplacement as hypabyssal in-trusives (Richter and Stettner 1979). Within the cor-dierite—biotite granitoids of the Waidhaus-Rozvadovpluton, the presence of cordierite would suggest a com-paratively low-pressure emplacement of the magmas(Green 1976).

In the northern Oberpfalz, intrusion depth estimatessuggest a crustal uplift of 6—8 km between early andlate intrusions. In the Fichtelgebirge unroofing duringmagmatism was controlled by uparching and forma-tion of the late Variscan anticline. The intrusion of theG4 granite coincides with the elevation of the deepestcore of the anticline. The available age data and fieldrelationships between the older and younger granitesreinforce the suggestion made by Richter and Stettner(1979) that the uplift of the Fichtelgebirge had reached5—7 km by that time.

Geochronology

All granitic units have been dated by Rb—Sr and K—Armethods (Figs. 4, 5; Table 2) and, to a lesser extent, by40Ar—39Ar, Sm—Nd and U—Pb methods. Holl et al.(1989) found that the 87Rb—87Sr whole-rock system ofthe redwitzites yield apparent ages of 545$16 Ma(Reuth-Erbendorf), 470$33 Ma (Tirschenreuth-Mahring) and 468$9 Ma (Marktredwitz). Theseauthors envisaged a late Variscan age for the redwit-zites, regarding the ‘‘Caledonian’’ ages as mixed ones.A 87Rb—87Sr apparent age of 415$20 Ma was foundfor the Wurz-Ilsenbach redwitzites (Siebel 1994) whichlowers to a late Variscan value when applying three-dimensional regression of the data by the method ofWendt (1993). For the Marktredwitz intrusion, Holl(1988) has found largely inconsistent K—Ar ageswith maximum values of 350 Ma for biotite and344 Ma for amphibole. Amphibole separates from theWurz-Ilsenbach and Reuth-Erbendorf intrusions yieldsimilar 40Ar—39Ar patterns, all showing a high-temper-ature plateau section of 342—346 Ma (Siebel et al. inpreparation). It is open to discussion whether this age

S50

Page 7: Granitoid magmatism of the NW Bohemian massif revealed: gravity data, composition, age relations and phase concept

20

4G4

2

2

0

0

4G3

G3 Kösseine

2

2

0

0

4

G2

G2 Kösseine

20

46

G1

20

20

0

20

20

4

Youn

ger

Gra

nite

s

20

Zainhammer

20

Liebenstein

20

468

Falkenberg

20

4Mitterteich

20

4Friedenfels

20

46

Steinwald

20

Flossenbürg

20

Bärnau

20

46

Leuchtenberg

Redwitzites

Bor

Crd.-bi granitoids

Rozvadov

Kreuzstein

290 295 300 305 310 315 320 325 Ma

Old

erG

rani

tes

northern partsouthernpart

Fig. 5 K—Ar age distribution histrogram using 1-Ma time slicesbetween 325 and 290 Ma for northeast Bavarian and west Bohemiangranitoids. Symbols — white: muscovite; black: biotite; hatched:amphibole. Three K—Ar ages of the redwitzites exceed 326 Ma andare not shown. Sources — redwitzites: Holl (1988), Siebel (1993a,1994); Leuchtenberg: Siebel (1995b); Bor II and III, cordierite—bio-tite granitoids, Rozvadov granite, Kreuzstein: Siebel et al. (1996); G1(including G1 Selb and G1 Reut granite facies), G2, G3, G4, G2 andG3 Kosseine: Besang et al. (1976); Carl and Wendt (1993); Mitter-teich: Siebel (1995a); Falkenberg, Liebenstein: Wendt et al. (1986);Friedenfels, Steinwald: Wendt et al. (1988, 1992); Barnau, Flossen-burg: Wendt et al. (1994)

information represents a primary cooling event in thehistory of these rocks.

For the Bor, Leuchtenberg and G1 granites geo-chronological studies suggest late Visean intrusiveevents (stratigraphic terminology used in this work isbased on the time-scale of Odin 1994). The biotite—monzogranite samples of the Bor granite (Bor II) yieldan Rb—Sr whole-rock age of 337$7 Ma (Siebel et al.1996). This age agrees with a U—Pb zircon age (upperintercept in concordia diagram) for this granite of332#11/—5 Ma (Dorr et al. 1996) and provides

an upper limit for the age of crystallization. Forthe Leuchtenberg granite, U—Pb zircon ages of333$5 Ma (Abdullah et al. 1994) and 342$3 (Kohlerand Holzl 1996) were obtained, casting doubt on thelate Visean age previously inferred for this granite(Kohler and Muller-Sohnius 1976; Siebel 1993a). How-ever, late Visean emplacement of the Leuchtenberggranite is supported by K—Ar data from micas ofthe western aureole which were rejuvenated duringcontact metamorphism at approximately 325 Ma (F.Henjes—Kunst, pers. commun.). The G1 granite in-truded at ca. 326 Ma according to Rb—Sr dating (Lenz1986; Carl and Wendt 1993). K—Ar data of muscoviteand biotite indicate that the granites of Bor, Leuchten-berg and G1 cooled down below the argon blockingtemperatures of the micas between 325 and 315 Ma(Fig. 5). Some G1 biotites show evidence of argon loss(Fig. 5) which is explained by later reheating of theyounger granites. A clear-cut K—Ar mineral age pro-gression is apparent within the Wurz-Ilsenbach redwit-zites and the northern half of the Leuchtenberg granite.This was attributed to slow cooling due to delayeduplift or, alternatively, to contact metamorphic over-print by the Falkenberg and Liebenstein granites(Siebel 1995b). K—Ar and 40Ar—39Ar data from theZainhammer granite show thermal disturbances andrange from 317 to 295 Ma (Wendt et al. 1992). Theseages are also related to reheating caused by the intru-sion of the younger granites.

The granites of Barnau, Falkenberg, Flossenburg,Friedenfels and Mitterteich were dated by Rb—Srwhole-rock analyses mainly between 315 and 310 Ma.U—Pb and Pb—Pb data are only available from theFalkenberg granite. Whole-rock and mineral samplesfrom this pluton yielded U—Pb and Pb—Pb ages of307$22 and 316$9 Ma, respectively (Carl et al.1989). Pb—Pb ages obtained by the evaporation tech-nique range widely between 320 and 370 Ma. This wasascribed to the presence of older detrital componentswithin the Falkenberg granite. The Rb—Sr whole-rockages of the Barnau, Falkenberg, Flossenburg, Frieden-fels and Mitterteich granites are essentially equal, with-in analytical uncertainty, to the K—Ar ages ofassociated muscovites. It is a common observation thatthe K—Ar biotite ages tend to be slightly younger thanthe muscovite ages (Fig. 5). This can be explained bythe different blocking temperatures of Ar in both micas,but also by the higher susceptibility of biotite to alter-ation. Muscovite ages from the Flossenburg granite areapproximately 10 Ma younger than the Rb—Sr whole-rock age and the K—Ar muscovite ages found in theadjacent Liebenstein granite. This could be interpretedin terms of different intrusion level, later uplift of theFlossenburg granite compared with the Liebensteingranite, or inhomogeneous temperature distribution inthe crust. Differences in postmagmatic uplift history arealso indicated by discordant K—Ar biotite ages betweenthe Falkenberg granite and the adjacent Mitterteich

S51

Page 8: Granitoid magmatism of the NW Bohemian massif revealed: gravity data, composition, age relations and phase concept

Table 2 Synopsis of U—Pb, Rb—Sr, K—Ar age data and Nd model ages (TDM

) for northeast Bavarian and west Bohemian granitoids. Givenuncertainties are 1 p. The uncertainty of the K—Ar mineral data is expressed by employing the 1!p error of the weighted mean. Note that thetotal range is quoted in those cases where the spread of data exceeds the analytical uncertainty of individual measurements

Granitoid U—Pb date Rb—Sr WR K—Ar mineral date (Ma) 87Sr/86Sr(T)

TDM

(Ga)(Ma) date (Ma)

Muscovite Biotite

Younger granitesG4 (1, 2) 289$2 293.5$0.6 293.4$1.1 0.7202$0.0061 1.6G3K (1, 2) 286$26 293.5$1.3 289.4$1.3 0.7159$0.0027 1.6G2K (1, 2) 287$4 296.7$2.3 294.7$2.3 0.7180$0.0008 1.7G3 (1, 2) 306$3 294.4$1.2 292.7$1.2 0.7106$0.0014 1.6G2 (1, 2) 305$4 294.0$1.6 294.4$1.6 0.7106$0.0014 1.5Barnau (3) 313$2 305.1$0.6 294.4$0.6 0.7151$0.0023 1.5Crd-Bi granite (4) 296$9 309.5$0.9 299 to 291 0.7156$0.0004 1.5Falkenberg (5, 6) 307$22 311$4 309.8$0.6 299.2$0.6 0.7097$0.0008 1.5Flossenburg (3) 312$3 299.6$0.5 293.7$0.5 0.7144$0.0017 1.6Friedenfels (7, 8) 315$2 308.1$0.4 302.5$1.3 0.7076$0.0011 1.6Kreuzstein (4) 297$2 303.1$0.9 0.737 $0.028 1.7Liebenstein (5) 320$40 306.7$1.4 301.1$1.4 0.7108$0.0037 1.6Mitterteich (9) 310$3 310.3$0.5 308.3$0.6 0.7104$0.0005 1.4Rozvadov (4) 304$19 306.5$0.9 315 to 292 0.7164$0.0040 1.5Steinwald (7) 310$1 306.5$0.4 302.1$0.4 0.7188$0.0015 1.6

Older granitesBor III (4) 319.9$1.3 305.4$1.3 1.3Bor II (4, 10) 332`11

~5337$7 317.4$0.7 0.7073$0.0003 1.4

G1 (1, 2) 326$2 316.4$0.7 313.1$0.7 0.7082$0.0001 1.4Leuchtenberg (11, 12) 342$3 326$2 323.9$0.5 322.0$0.3 0.7078$0.0001 1.3Zainhammer (7) 308$0.6 300.8$0.7 1.3

RedwitzitesBor I (4) 317.4$0.9Marktredwitz (13, 14) 468$9 350 to 327 0.7058$0.0009 1.3Reuth-Erbendorf (13, 14) 538$22 308 to 301 0.7043$0.0002 1.3Tirschenreuth (13) 470$33 0.7051$0.0004 1.2Wurz-Ilsenbach (15) 415$20 319 to 307 0.7050$0.0003 1.2

Reference (U—Pb, Rb—Sr, K—Ar data): 1 Besang et al. (1976); 2 Carl and Wendt (1993); 3 Wendt et al. (1994); 4 Siebel et al. (1996); 5 Wendtet al. (1986); 6 Carl et al. (1989); 7 Wendt et al. (1988); 8 Wendt et al. (1992); 9 Siebel (1995a); 10 Dorr et al. (1996); 11 Siebel (1995b); 12 Koh-ler and Holzl (1996); 13 Holl et al. (1989); 14 Holl (1988); 15 Siebel (1994). Nd model ages based on data from Holl et al. (1989) and Siebel et al.(1995)

granite (Fig. 5). For the cordierite—biotite granitoidsand the Kreuzstein (Kr\ ız\ ovy kamen) granite in westBohemia, Rb—Sr whole-rock data suggest ages ofaround 300 Ma (Siebel et al. 1996). In these cases theRb—Sr ages do not date the intrusion because numer-ous K—Ar mica ages define minimum ages of 313 Mafor the cordierite—biotite granitoids and 305 Ma for theKreuzstein granite (Siebel et al. 1996).

A final group of granites which includes G2, G3, G4and the Kosseine granites (G2K, G3K) is characterizedby Stephanian Rb—Sr whole-rock ages, i.e. 305—290 Ma(Carl and Wendt 1993). K—Ar and Rb—Sr mineral agesof the G2 and G3 granites are in the range 292—295 Maand are younger than the Rb—Sr whole-rock ages of305 Ma. This was explained by Carl and Wendt (1993)as a late Stephanian thermal reset caused by the intru-sion of the G4 granite. Paradoxically, the K—Ar ages ofthe G4 granite are slightly older than the apparentRb—Sr whole-rock age, implying a minimum age ofapproximately 300—295 Ma for the G4 intrusion (Fig. 5).Rb—Sr dating of inclusions of G2 granite in G4 granite

(‘‘G2 in G4’’) has yielded a similar age to that of G4(Fig. 4). According to Carl and Wendt (1993), thisindicates the effect of reequilibration of the G2 Rb—Srsystem during the G4 intrusion event. Another ex-planation is given by Hecht (1993), who suggests thatthe G2 granite inclusions can be regarded as thegranophyric roof facies of the G4 granite.

Geochemistry

Whole-rock composition

Approximately 400 samples, covering all intrusions,were used for geochemical evaluation. The rare earthelement distribution of the granites is discussed else-where (Breiter and Siebel 1995; Siebel et al. 1995; Hechtet al. 1997; Irber et al. 1997). In terms of main and traceelement composition, the granitoids form an extendedseries, as shown by the average chemical analyses(Table 3). The redwitzites are metaluminous rocks

S52

Page 9: Granitoid magmatism of the NW Bohemian massif revealed: gravity data, composition, age relations and phase concept

Tab

le3a

Ave

rage

anal

yses

ofgr

anitoi

ds

from

nort

heas

tB

avar

iaan

dw

estB

ohe

mia

Gra

nito

idR

edw

itzi

t!R

edw

itzi

t"Zai

nha

mm

erBor

II#

Bor

III$

G1#

G1R

%G

1S&

Leu

chte

nber

g'

Leu

chte

nber

g)

Lie

ben

stei

nFal

ken

ber

gM

itte

rtei

chN

1436

416

1033

922

67

558

SiO

2(w

t%)

52.6

257

.94

68.5

068

.94

73.8

369

.47

73.9

170

.50

74.5

168

.04

70.6

371

.74

TiO

21.

201.

160.

450.

460.

120.

530.

190.

400.

030.

190.

420.

40A

l 2O3

17.0

516

.84

15.5

215

.00

14.1

714

.89

14.4

114

.57

14.3

516

.58

14.4

014

.24

Fe 2O

37.

386.

392.

992.

851.

093.

191.

322.

530.

931.

322.

552.

47M

nO0.

120.

100.

050.

050.

040.

060.

030.

050.

080.

030.

040.

05M

gO6.

163.

900.

630.

960.

300.

900.

340.

670.

070.

370.

530.

51C

aO7.

675.

591.

301.

870.

691.

870.

771.

560.

290.

871.

051.

07N

a 2O2.

813.

013.

303.

413.

593.

433.

593.

274.

103.

443.

232.

91K

2O2.

313.

005.

144.

454.

554.

714.

854.

723.

997.

255.

074.

82P2O

50.

370.

330.

260.

220.

260.

280.

270.

180.

130.

250.

320.

26

Ba

(ppm

)10

2310

1070

987

926

384

435

265

110

693

281

328

Ce

6995

6912

234

9553

103

1843

105

88C

o26

23n.

d.

n.d.

n.d.

n.d.

n.d.

119

1415

11C

r14

011

9n.

d.

4116

118

4235

1110

44C

s8

10n.

d.

914

1019

18n.

d.

n.d.

n.d.

26G

a20

21n.

d.

2118

1923

2735

n.d.

n.d.

27H

f3

2n.

d.

n.d.

n.d.

n.d.

n.d.

32

n.d.

n.d.

2L

a51

5844

7424

6737

515

2851

43N

b19

1814

1511

159

1622

1221

20N

i34

30n.

d.

2419

43

13n.

d.

108

n.d.

Pb

1523

3444

3935

3548

2154

3030

Rb

8612

023

317

020

623

032

121

945

935

335

233

2Sc

2321

78

410

n.d.

73

46

6Sn

n.d.

n.d.

n.d.

711

814

3948

n.d.

2836

Sr58

241

713

223

367

209

7415

75

161

7182

Ta

n.d.

n.d.

n.d.

n.d.

n.d.

n.d.

n.d.

n.d.

57

83

Th

1522

1534

n.d.

3115

329

1638

33U

34

810

95

66

108

1813

V14

712

923

32n.

d.

5313

30n.

d.

1414

25Y

2222

2420

1017

1114

814

2215

Zn

7378

6556

4260

4754

4142

8462

Zr

231

249

201

228

4922

687

210

3410

019

317

1

!G

abbro

s,di

orites

;"to

nalit

es,g

rano

dio

rite

s;#m

onz

ogra

nite

s,gr

anodi

orites

;$le

uco

monz

ogr

anites

;%R

eutgr

anite

faci

es;&

Sel

bgr

anite

faci

es;'

Bio

tite

gran

ites

;)M

usco

vite

gran

ites

;n.d

.no

tde

term

ined

S53

Page 10: Granitoid magmatism of the NW Bohemian massif revealed: gravity data, composition, age relations and phase concept

Tab

le3b

Ave

rage

anal

yses

ofgr

anitoi

ds

from

nort

heas

tB

avar

iaan

dw

estB

ohe

mia

Gra

nito

idFlo

ssen

burg

Bar

nau

Stei

nwal

dFried

enfe

lsC

rd—B

igr

anite

Rozv

adov

Kre

uzs

tein

G2

G3

G2K

G3K

G4

N12

1611

2212

1318

2032

59

36

SiO

2(w

t%)

72.3

273

.19

73.2

173

.56

55.5

173

.61

73.4

274

.25

75.5

474

.24

71.1

675

.09

TiO

20.

140.

130.

060.

140.

320.

110.

010.

230.

160.

240.

500.

07A

l 2O3

14.8

014

.55

15.1

814

.01

25.3

314

.74

15.1

813

.37

13.0

613

.58

14.0

213

.62

Fe 2O

31.

131.

170.

961.

336.

020.

910.

662.

151.

852.

083.

841.

51M

nO0.

030.

030.

050.

030.

080.

030.

090.

040.

030.

030.

050.

03M

gO0.

250.

240.

060.

134.

650.

190.

020.

280.

190.

250.

590.

07C

aO0.

470.

470.

340.

461.

340.

530.

220.

730.

580.

661.

370.

41N

a 2O3.

783.

684.

093.

621.

913.

334.

682.

973.

042.

872.

763.

52K

2O4.

824.

404.

104.

721.

834.

723.

565.

344.

985.

275.

114.

76P2O

50.

360.

350.

430.

340.

380.

360.

510.

190.

190.

230.

260.

23

Ba

(ppm

)13

860

n.d.

8619

118

419

266

133

283

842

37C

en.

d.

n.d.

n.d.

2685

13—

7137

3386

n.d.

Co

n.d.

n.d.

n.d.

n.d.

16n.

d.

n.d.

n.d.

n.d.

n.d.

n.d.

9C

rn.

d.

n.d.

n.d.

n.d.

63n.

d.

n.d.

87

1112

11C

sn.

d.

3491

1611

1659

2633

2212

51G

an.

d.

2840

2345

1927

2221

2116

36H

fn.

d.

n.d.

n.d.

n.d.

32

2n.

d.

n.d.

n.d.

n.d.

n.d.

La

n.d.

1048

5837

7—

4934

3556

37N

b19

1435

179

947

1211

1113

15N

in.

d.

n.d.

n.d.

n.d.

2810

114

410

64

Pb

2121

1925

3940

n.d.

2935

3527

20R

b48

446

477

735

996

235

1095

420

431

371

243

704

Sc4

34

43

n.d.

n.d.

n.d.

6n.

d.

9n.

d.

Sn34

2249

295

1125

1315

115

29Sr

3118

1230

121

505

3929

6092

10Ta

n.d.

n.d.

118

74

25n.

d.

n.d.

n.d.

n.d.

n.d.

Th

1310

58

197

n.d.

2513

1119

10U

127

1718

55

136

105

321

Vn.

d.

n.d.

n.d.

n.d.

38n.

d.

n.d.

119

1331

n.d.

Y11

89

1216

5—

2825

2126

16Z

n64

6783

4917

744

8244

4344

5745

Zr

5852

3257

8955

2011

077

108

257

45

n.d.

not

det

erm

ined

;—no

tdet

ecte

d

S54

Page 11: Granitoid magmatism of the NW Bohemian massif revealed: gravity data, composition, age relations and phase concept

Fig. 6 Plot of A/CNK [mol% Al2O

3/(CaO#Na

2O#K

2O)] vs

wt.% SiO2

for northeast Bavarian and west Bohemian granitoids.Inset: data for the cordierite—biotite granitoids

Fig. 7 Rb/Zr vs wt.% TiO2

diagram for northeast Bavarian andwest Bohemian granitoids

Fig. 8 Rb (ppm) vs Nb#Y (ppm) discriminant plot (Pearce et al.1984) for northeast Bavarian and west Bohemian granitoids; syn-CO¸G syn-collision granites; »AG volcanic arc granites, ¼PGwithin-plate granites; ORG ocean-ridge granites

with A/CNK (molecular Al2O

3/Na

2O#K

2O#CaO)

ranging from 0.8 to 1.0 and evolving towards higherA/CNK values with increasing silica (Fig. 6). They be-long to the calc-alkaline magmatic association andhave geochemical signatures of I type granitoids(Chappell and White 1974). The geochemical variationpattern within the redwitzite suite is distinct from thatof the other granitoids. These are peraluminous(A/CNK from 1.0 to 1.3), reflected in the presence ofmuscovite and Al-rich biotite. The enhanced A/CNKmolar ratios of the cordierite—biotite granitoids (insetin Fig. 6) can be ascribed to the high contents ofwell—preserved cordierite (up to 50%). The older gran-ites (Bor, G1, Leuchtenberg, Zainhammer) aretransitional between I and S type, corresponding to themonzogranite— granodiorite group described by Didierand Lameyre (1969). Most of the younger granites areS type.

The Rb/Zr vs TiO2

plot (Fig. 7) can be used todiscriminate between the granitoids. The most notablefeature is the higher TiO

2content of the redwitzites

compared with the other granitoids. With the exceptionof the G1 Selb granite facies, the older granites areroughly lower in Rb than the younger granites. Notethat the cordierite—biotite granitoids and the Rozvadovgranite are depleted in Rb, and therefore plot near theolder granites in this diagram.

Within the plot Rb vs Nb#Y (Fig. 8) the redwitzitesfall within the field of volcanic arc granites (VAG). Theolder granites cross the line separating the VAG fromthe syn-collisional field (syn-COLG), with most ana-lyses plotting in the VAG field. Apart from a fewRb-poor cordierite—biotite granite samples, theyounger granites plot in the syn-COLG field. Nb andY in the Kreuzstein granite tend to be higher than in

the other members, due to the presence of columbite inthese rocks. The total range of data in this diagram isconsistent with the postorogenic nature of the gran-itoids (Pearce et al. 1984). However, the overall shifttowards higher Rb concentration from the redwitzitesthrough the older granites to the younger granitesmay reflect changes in either (a) degree of partialmelting or fractional crystallization, (b) depth ofmagma generation, (c) source-rock type or (e) deutericalteration.

S55

Page 12: Granitoid magmatism of the NW Bohemian massif revealed: gravity data, composition, age relations and phase concept

Table 4a Average analyses of biotites from northeast Bavaria and west Bohemia

Granitoid Red-witzit!

Red-witzit"

Zain-hammer

Bor II# G1#GIR$ GIS% Leuchten- Leuchten- Falken- Mitter-berg& berf ' berg teich

N 7 6 4 1 13 3 11 3 28 4

SiO2

(wt%) 37.19 35.64 34.93 33.88 34.83 33.92 35.11 34.07 34.17 34.35TiO

23.38 4.12 3.35 2.64 3.37 3.05 3.54 1.50 2.71 2.89

Al2O

315.58 15.72 19.24 20.01 17.62 19.28 17.63 21.33 18.69 19.14

FeO505

18.29 20.59 21.76 22.52 22.78 23.13 21.23 24.89 23.66 22.25MnO 0.19 0.25 0.29 0.33 0.30 0.32 0.38 0.71 0.32 0.40MgO 10.94 9.21 5.11 5.72 7.56 6.86 6.39 1.47 5.82 5.25CaO 0.59 0.44 0.26 0.16 0.69 0.85 0.46 0.07 0.29 0.24Na

2O 0.15 0.19 0.16 0.30 0.14 0.06 0.16 0.20 0.08 0.06

K2O 8.87 8.76 8.91 7.40 8.87 7.22 8.72 8.34 8.68 8.95

P2O

50.08 0.11 0.19 0.10 0.23 0.12 0.25 0.03 0.15 0.13

Ba (ppm) 2865 2251 1042 132 1017 387 1020 37 212 384Co 65 47 32 17 34 28 36 15 17 26Cr 363 157 94 56 59 93 135 25 43 52Cs 31 38 — 152 73 80 104 n.d. n.d. 166Li n.d. n.d. n.d. n.d. 704 2446 n.d. n.d. n.d. n.d.Nb 39 81 126 231 85 105 121 267 144 148Ni 67 52 39 21 27 27 46 13 30 23Rb 410 573 940 1236 786 856 932 2103 1289 1362Sc 28 45 53 36 57 24 53 — 21 33Sn 4 10 45 78 63 86 50 195 30 66Ta 13 10 8 38 8 14 17 39 10 24V 448 307 233 93 354 218 213 28 138 165Zn 231 337 464 980 489 713 521 1167 751 594

!Gabbros, diorites; " tonalites, granodiorites; # monzogranites, granodiorites; $Reut granite facies; % Selb granite facies (including only leastdifferentiated samples); & Biotite granites; ' Muscovite granites; n.d. not determined; — not detected

Fig. 9 AlVI vs Fe/(Fe#Mg) ratio in biotites from northeast Bavar-ian and west Bohemian granitoids (structural formulae calculatedon the basis of 22O)

Biotite composition

Biotite is a very sensitive indicator of physicochemicalconditions and compositional evolution in granitoidgenesis (Speer 1984). Many trace elements such as Ba,Co, Cr, Ni, Rb, V and Zn, are concentrated in biotite(Bailey 1984; Hecht 1993; p. 84), which is present inalmost all granite facies of the study area. Biotite separ-ates from all granites were analysed by X-ray fluores-cence for major and trace elements (data from Hecht1993; Siebel 1993a, 1995a; BGR, unpublished data).FeO, Li and microprobe analyses including F and Clare only available for biotites of the Fichtelgebirgegranites (Hecht 1993; L. Hecht, unpublished data).

Biotites of the redwitzites are Mg-rich (Fig. 9; Table4) and can be classified as Mg biotites according to thescheme of Foster (1960). Based on the genetic classifica-tion of Nachit et al. (1985), the redwitzite samples fall ina high Mg section of the calc-alkaline field which ischaracteristic of rocks containing coexisting biotite andhornblende or pyroxene (Fig. 10). Note that there isalmost no Al enrichment in biotite with increasingdegree of whole-rock differentiation as is seen in theother granitoids. Furthermore, the trace element pat-tern of redwitzite biotites differs significantly from thatof the other granitoids; they display lower Rb and Zncontents, higher Ba contents and very high contents ofcompatible elements such as Co, Cr, Ni and V (Table 4).

The biotites of the older granites have higherFe/(Fe#Mg) ratios and are classified as Fe biotites(Foster 1960), with the exception of some which aredominated by the siderophyllite component. The bio-tites of the more differentiated granites, such as the G1Selb granite facies, are enriched in Li. As exemplified bythe whole-rock data, the biotites of the older granites

S56

Page 13: Granitoid magmatism of the NW Bohemian massif revealed: gravity data, composition, age relations and phase concept

Table 4b Average analyses of biotites from northeast Bavaria and west Bohemia

Granitoid Flossenburg Barnau Steinwald Friedenfels Crd—Bi Rozvadov G2 G3 G3K G4granite

N 5 3 8 4 2 2 4 7 4 8

SiO2

(wt%) 35.11 34.74 35.24 34.83 35.30 34.18 34.99 34.77 34.49 38.79TiO

22.38 2.30 1.94 2.55 1.81 2.72 3.11 2.90 2.83 1.05

Al2O

319.14 19.81 21.78 20.52 20.19 19.75 20.19 20.56 18.75 23.10

FeO505

24.45 24.24 23.19 24.07 17.86 22.70 24.42 25.45 25.97 19.87MnO 0.53 0.45 0.25 0.31 0.08 0.30 0.36 0.43 0.22 0.43MgO 3.44 2.93 1.36 2.31 10.85 5.65 3.17 2.23 4.54 0.67CaO 0.05 0.05 0.02 0.10 0.07 0.08 0.19 0.09 0.19 0.03Na

2O 0.11 0.16 0.36 0.28 0.25 0.17 0.24 0.19 0.18 0.34

K2O 8.88 8.43 9.10 8.83 7.18 8.23 9.01 8.88 8.81 9.47

P2O

50.05 0.08 0.07 0.10 0.05 0.08 0.19 0.10 0.05 0.06

Ba (ppm) 53 100 — 50 408 150 284 225 261 15Co 25 26 — 16 36 15 25 18 31 5Cr 53 62 12 64 376 24 46 52 90 7Cs n.d. n.d. n.d. n.d. 63 132 218 313 60 660Li n.d. n.d. n.d. n.d. n.d. n.d. 1305 2685 557 7000Nb 252 234 433 339 26 127 165 179 83 233Ni 29 21 11 15 57 15 11 18 39 9Rb 2241 2388 3101 2124 718 1324 1264 1556 834 4685Sc — — 15 — 16 17 62 79 86 29Sn 92 75 249 159 6 48 102 132 19 285Ta 42 50 79 36 9 16 18 22 7 53V 53 72 52 102 311 66 220 189 269 51Zn 1132 1381 1545 1084 679 1203 495 578 418 644

n.d. not determined; — not detected

Fig. 10 Granitoid typology based on biotite chemistry (Mg vs Al505

)according to Nachit et al. (1985). Structural formulae of biotitescalculated on the basis of 22O

show a large compositional variation in major andtrace element contents, even within single intrusivecomplexes such as the Leuchtenberg granite (Table 4).Within the older granites significant Al enrichmentin the biotites occurs with increasing differentiation.

This trend is also reflected by a change from the calc-alkaline towards the alumino-potassic field (Fig. 10).

The biotites of the younger granites show a largevariation in major and trace element contents. Withincreasing Fe/(Fe#Mg) ratios, for example, their Alcontents continuously increase towards the siderophyl-lite end member (Fig. 9). In the Fichtelgebirge, Li-richsiderophyllites (G2, G3), or even protolithionites (G4),occur. All of these plot in the alumino-potassic fieldthat is typical for two-mica granites (Fig. 10). In gen-eral, biotites of the younger granites have a higherFe/(Fe#Mg) ratio, lower concentration of Ba, Cr, Niand V, and higher concentration of granitophile ele-ments, such as Cs, Li, Rb and Sn, than the oldergranites (Table 4). The biotites of the cordierite—biotitegranitoids are distinct from the others and are charac-terized by relatively high Al, Cr, Mg, V and Zn at lowBa, Co and Ni contents.

Significant differences in the F and Cl contents andhalogen fugacities have been shown for the biotites ofthe older (G1 and G1 Selb facies ) and younger granites(G2, G3, G4) in the Fichtelgebirge area (Hecht 1993,1994a, b). The younger granites contain biotites withmuch higher halogen contents (max. 4 wt.% F andmax. 0.35 wt.% Cl) than the older granites (max.1 wt.% F and max. 0.1 wt.% Cl). The relative oxygenfugacities were determined from the chemical composi-tion of biotites from the Fichtelgebirge granites (Hecht1993), applying the experimental results of Wones and

S57

Page 14: Granitoid magmatism of the NW Bohemian massif revealed: gravity data, composition, age relations and phase concept

Red

witz

ites

Youn

ger

Gra

nite

sO

lder

Gra

nite

s

εNd(T)

Bas

emen

tP

arag

neis

ses

&M

etas

edim

ents

-10 -8 -6 -4 -2 0 2

Moldanubian,Saxothuringian

ZEV, ZTT

Bor I (2)Wurz-Ilsenbach (4)

Tirschenreuth-Mähring (5)

Marktredwitz (11)

Bor II & III (8)

Leuchtenberg (12)

Zainhammer (3)

G1 (10)

Crd.-bi granitoids (3)Rozvadov (3)

Kreuzstein (3)Mitterteich (3)

G4 (4)

G2 & G2K (5)

G3 & G3K (5)

Friedenfels (5)

Flossenbürg (4)

Bärnau (6)

Falkenberg (9)

Steinwald (3)

Liebenstein (8)

Reuth-Erbendorf (5)

** ** *

* ***

* *

** **

****

** * *****

Fig. 11 Compilation of eN$(T)

values for northeast Bavarian andwest Bohemian granitoids. Numbers in parentheses refer to thenumber of analyses. Data sources: Holl et al. (1989), Siebel et al.(1995, 1996). The fields of basement paragneisses and metasedimentsat 320 Ma were derived from unpublished data (F. Henjes-Kunst).This figure is an updated version of the diagram presented in Siebelet al. (1995)

Eugster (1965). The biotites of the older granites giveoxygen fugacities close to the Ni—NiO buffer, whereasthe biotites of the younger granites indicate much loweroxygen fugacities around the quartz—fayalite—magne-tite buffer. Consequently, it is suggested that theyounger granites were formed under more reducingconditions than the older granites.

Sr and Nd isotopes

Low 87Sr/86Sr340M!

ratios ranging from 0.705 to 0.708are confined to the redwitzites. The older granites covera narrow range in 87Sr/86Sr

330M!with ratios of 0.707

and 0.708 (Fig. 4). The younger granites show a widerange of 87Sr/86Sr

310~300M!ratios between 0.708 and

0.720, with most greater than 0.710, displaying a pro-nounced crustal signature. The distinctly lower initialSr ratios of the less evolved Falkenberg, Friedenfels,G2, G3 and Mitterteich granites (0.708—0.710) relativeto the strongly evolved Barnau, Flossenburg andSteinwald granites (0.714—0.719) might suggest that theisotopic composition of the parent magmas changedduring emplacement, as a result of increasing influenceof felsic crustal material and/or protracted time ofdifferentiation.

The initial Nd isotopic ratios show a clear distinctionbetween the older granites, including the redwitzites,and the younger granites (Fig. 11). With few exceptions,the older granites cover a range in e

N$(T)from 0 to —4.

The redwitzite values are more scattered in compari-son. The younger granites have e

N$ (T)values lower than

—4. Two-stage Nd model ages (¹DM

) of the granitoidsare in the range 1.2—1.7 Ga (Table 2). These ages pro-vide support for substantial involvement of old crust inthe generation of the granitic melts.

Phase concept

Geochronological evidence has led to a considerablerefinement of the emplacement sequence of the gran-itoids. Combining all available data, the history ofmagmatic activity can be subdivided into three tem-porally distinct phases (Table 5):

Phase Ia: Intrusion of the redwitzites (&350—325 Ma).Phase Ib: Intrusion of the granites of Bor (Bor II andIII), Weissenstadt-Marktleuthen (G1, including G1Reut and G1 Selb facies), Leuchtenberg and Zainham-mer, i.e. those units which have been referred to as oldergranites (340—325 Ma). Although it is evident from fieldobservations that phase Ib was predated by phase Ia,there is insufficient reliable geochronological data forthe redwitzites to rule out the possibility that the gran-itoids of both phases intruded broadly coevally.Phase II: Intrusion of the granites of Barnau, Falken-berg, Flossenburg, Friedenfels, Kreuzstein, Liebenstein,

Mitterteich, Rozvadov and Steinwald (315—310 Ma).Subordinate, atypical members, such as the cordierite-biotite granitoids of the Waidhaus-Rozvadov pluton,are considered to be part of this group.Phase III: Intrusion of the G2 and G3 granites,the Kosseine granites (G2K, G3K) and the G4

S58

Page 15: Granitoid magmatism of the NW Bohemian massif revealed: gravity data, composition, age relations and phase concept

Table 5 Summary of plutonicevents (phase concept) innortheast Bavaria and westBohemia

Plutonism Rock type Granitoid

Phase III

305—295 MaYounger granites

Two-mica monzogranites, two-micasyenogranites, leucogranites

G2, G3, G2K, G3K, G4

Phase II

315—325 MaYounger granites

Two-mica monzogranites,leucogranites

Barnau, cordierite—biotite granitoids,Falkenberg, Flossenburg, Friedenfels,Kreuzstein, Mitterteich, Rozvadov,Steinwald

Phase Ib

340—325 MaOlder granites

Biotite- and two-mica monzogranites,minor granodiorites andleucogranites

Bor II, Bor III, G1, Leuchtenberg,Zainhammer

Phase Ia

350—325 MaRedwitzites

Diorites, tonalites, minorgranodiorites and gabbros

Bor I, Marktredwitz, Reuth-Erbendorf,Tirschenreuth-Mahring, Wurz-Ilsenbach

granite. Such rocks are restricted to the Fichtelgebirgecomprising granites where 87Rb—87Sr and 40K—40Arstudies indicate Stephanian ages (305—295 Ma).

In general, isotopic data confirm the intrusion se-quence determined from field and geochemical studies.However, it is obvious that some granites displayingsimilar petrographic and geochemical characteristicsand which could, therefore, be grouped together, showeither differences in age or isotopic composition, fea-tures which do not favour a close relationship [e.g.Leuchtenberg (phase Ib) and Liebenstein (phase II) orKreuzstein (phase II) and G4 (phase III)]. A minimumage of 320 Ma is inferred for the Falkenberg granitefrom thermal modeling of the cooling history (Zulaufet al. 1997). However, an affinity of the Falkenberggranite with phase II is supported by the Sr and Ndisotopic data (Figs. 4, 11). In the Fichtelgebirge theKosseine granites G2K and G3K have similar Rb—Srwhole-rock ages (290 Ma) to the highly differentiated G4granite (Carl and Wendt 1993). However, on the basis oftheir outcrop pattern, the Kosseine granites belong tothe G2/G3 stage (305 Ma) and represent the deepestintrusion level elevated during the G4 magmatic activity.

Controls on mobilization of granitic melts and potentialmagma sources

The importance of the role of late Variscan low-pres-sure high-temperature regional metamorphism in crus-tal melting and magma generation is widely accepted.One of the major unanswered questions concerns thecritical factors giving rise to the existence of differentgranitoid phases. Are the phases primarily the result ofthe differential availability of fertile source rocks, orof magma ascent mechanisms controlled by regional

tectonic episodes? Provided that tectonics played a vi-tal role for granite emplacement, large-scale faultingmay have facilitated the uprise of the granitic melts.The case for regional control of granitic activity isstrengthened by the fact that magmatism was broadlysynchronous within the different regions (Fichtel-gebirge, northern Oberpfalz, Waidhaus-Rozvadov,Bor). Phase-Ia and -Ib granitoids are characterized bylarge compositional differences, although field evidencesuggests a spatial and temporal association of bothphases. As can be seen from field relations, the conduitsor ascent paths which defined the intrusion localities ofthe redwitzites (phase Ia) also influenced the localitiesof the phase-Ib granites (Madel 1968, p. 62). Within theBor complex, phase-Ia (Bor I) and -Ib (Bor II and III)magma accumulation was partly aided by activation oflarge fracture zones such as the West Bohemian shearzone (Krohe et al. 1994; Zulauf 1994). We thereforeenvisage the existence of a single tectonic event for theupward passage of the phase-Ia and -Ib magmas. Themajor change in magmatic activity took place betweenthe older granitoids (phases Ia and b) and the youngergranitoids (phases II and III). This change may beascribed to the tapping of new source compositions(Fig. 11). It seems that from this point onwards, largevolumes of felsic melts were produced by reworking ofmore fertile crustal domains. According to the geo-chronological data, the transition from phase-Ib tophase-II magmatism took place during a period of atleast 10—20 Ma. In sharp contrast to compositionaldifferences between phases I and II, only minor differ-ences are present between the younger granites ofphases II and III. The time gap of approximately5—10 Ma observed between these two phases was prob-ably merely a result of different tectonic events.

Huge quantities of heat are required for magmatism.Hecht et al. (1989), Hecht (1994b) and Siebel et al.

S59

Page 16: Granitoid magmatism of the NW Bohemian massif revealed: gravity data, composition, age relations and phase concept

(1995) envisaged that granite magmatism in this regionwas triggered by the influx of mantle magma into thelower crust. Relicts of potential mantle contributionsare represented by the sparse redwitzites and probablyalso by mafic enclaves in the phase-Ib granites. Mantleinput is also indicated by late Variscan granitoids (e.g.Mute\ nın diorite) that intruded further to the south intothe West Bohemian shear zone (Zulauf 1994; Wulf et al.1996). We suggest that underplating of basic intrusionswas responsible for the onset of high-temperature par-tial melting of crustal source lithologies.

We also call attention to the relationship betweenthickened orogenic crust and granite genesis. The maincrustal thickening of the Bohemian massif had alreadyoccurred prior to the Carboniferous, probably duringthe Upper Devonian when Peri-Gondwana was amal-gamated with the East European platform and largeregions of the former oceanic crust had been subducted.A Carboniferous orogenic event causing crustal thick-ening and formation of the Fichtelgebirge-Erzgebirgeanticline has taken place within the southern Saxo-thuringian zone.

Geochemical characteristics show that the redwit-zites differ from the granites by distinct fractionationtrends and compositional gaps. This suggests that thesources of the redwitzites are not related to those of theother phases by simple geochemical fractionation pro-cesses. The wide range of geochemical and isotopiccomposititon of the redwitzites has led to an equallywide range of interpretations concerning their origin(see Troll 1968). Matthes and Richter (1990) suggestedredwitzites could be formed by mixing granitic andbasic melts, the latter of which were apparently formedby anatexis of country rocks. Holl et al. (1989) havechallenged a hybrid origin of the Reuth-Erbendorf,Tirschenreuth-Mahring and Marktredwitz redwitzites,pointing out that their isotopic features can be gener-ated by mixing mantle magma with granitic melt.

The granites of phases Ib, II and III are characterizedby strong chemical fractionation even within singleintrusive units. These magmas were held in residencelong enough for differentiation to occur. The decreasein oxygen fugacities in the biotites from the older to theyounger granites in the Fichtelgebirge implies thatcrustal components containing organic matter becameincreasingly important as potential source rocks. Thesignificantly higher halogen contents in the phase-IIIgranites is consistent with a greater contribution fromrelatively mature crustal rocks. Another explanationfor the variation of halogen contents could be thechange in melting conditions in the crustal source re-gion. The fluids necessary for partial melting can beenriched in halogens, such as fluorine, if they are gener-ated by the breakdown of biotite in the source rock(Christiansen et al. 1988; London 1995). Partial meltingof crustal material preferentially induced by biotitebreakdown was probably an important process duringformation of the phase-II and phase-III granites.

Initial Sr and Nd isotopic ratios are powerful indi-cators of the source of the magmas. The range in Sr andNd isotopic composition found in the phase-Ia gran-itoids could indicate derivation from subductedoceanic crust, or a mantle source with some contamina-tion from old radiogenic continental crust. As men-tioned above, mixing between mantle and crustalcomponents was also favoured by Holl et al. (1989).Based on Sr and Nd ratios, source rocks of phase-Ibgranitoids could be dominated by mafic-rich crustalmaterial or, alternatively, by preexisting mature crustcontaminated by mantle material. High crustal influ-ence seems to be very important for the geneses of thephase-II and phase-III granites and may account forthe Nd isotopic differences between them and the oldergranitoids.

Comparison of granitoid eN$(T)

values with those ofthe metasedimentary basement rocks exposed nearby(F. Henjes-Kunst, unpublished data) allows a closerspecification of possible source materials for the gran-itoids. The basement rocks can be divided into twoisotopically distinct regions: (a) ZEV and Tepla Bar-randian, and (b) Moldanubian and Saxothuringian.Paragneisses of the ZEV and of the Tepla Barrandianexhibit a range in eNd

320M!which encompasses the

phase-Ia and -Ib granitoids. On the other hand,there is a clear overlap in both I

S3and eNd

320M!be-

tween the Moldanubian and Saxothuringian countryrocks and the phase-II and phase-III granitoids(Fig. 11).

Summary and conclusions

Late-Variscan granitoids of northeast Bavaria and westBohemia can be divided into the following major tem-poral phases: a redwitzitic truly I type association(phase Ia), a biotite monzogranite association (granitesof Bor, G1, Leuchtenberg and Zainhammer) showingtransitional I and S type characteristics (phase Ib) andtwo leucogranite associations (phase II: granites of Bar-nau, Falkenberg, Flossenburg, Friedenfels, Kreuzstein,Mitterteich, Steinwald, Rozvadov and phase III: G2,G2K, G3, G3K and G4) with features corresponding totypical S type granites. Gravity data provide informa-tion on deeper structures of the granites. Within thenorthern Oberpfalz and west Bohemia, the granites ofBor, Falkenberg, Flossenburg, Barnau and Waidhaus-Rozvadov yield thicknesses between 4 and 8 km,whereas the granites of the Fichtelgebirge extend to2—8 km below the surface.

If we consider the age and isotopic information,granitoid evolution may be constrained as follows:

Phase-Ia granitoids (granodiorites, tonalites, (quartz)diorites and minor gabbros): 350—325 Ma with lowapparent 87Sr/86Sr

340M!ratios of 0.705 to 0.708 and

eN$(T)

values of 1 to —4

S60

Page 17: Granitoid magmatism of the NW Bohemian massif revealed: gravity data, composition, age relations and phase concept

Phase Ib granitoids (granodiorites, monzogranites,leucogranites) : 340—325 Ma with low to intermediateinitial 87Sr/86Sr ratios of 0.707—0.708 and e

N$(T)values

of —2 to —4Phase II granitoids (two-mica monzogranites, leuco-granites): 315—310 Ma with moderate to high initial87Sr/86Sr ratios of 0.710 to 0.719 and e

N$(T)values of —4

to —8Phase III granitoids (two-mica monzogranites, leuco-granites): 305—295 Ma with very high initial 87Sr/86Srratios of 0.716 to 0.720 and e

N$(T)values of —6 to —8

Phase-Ia granitoids represent a relatively small vol-ume of mafic magmas that show signs of hybridization.Both the older (phase Ib) and the younger (phases IIand III) granites comprise homogeneous rocks withstrong compositional zoning indicating intensive frac-tionation culminating in highly evolved leucogranites.The existence of different granitoid phases appears tobe a direct consequence of major tectonic episodes andchanges in source-rock availability. The systematicvariations in chemical and isotopic composition fromphase Ia to phase III are thought to result principallyfrom the increasing influence of crustal source material.Geochemical composition and isotopic characteristicsof the phase-Ia granitoids are interpreted in terms ofinteraction between crust and mantle-derived magmas.Compositional features of the phase Ib granitoids areconsistent with an origin as anatectic melts mainlyfrom preexisting mature crust, with a contribution ofmantle material or, alternatively, as melts of chemicallyless-evolved crust resembling paragneisses of the ZEVand Tepla Barrandian tectonometamorphic units.Phase-II and phase-III granitoids show evidence ofhaving been solely derived from mature crustal seg-ments resembling surrounding Moldanubian para-gneisses and Saxothuringian metasediments.

Acknowledgements We are grateful to Prof. P. Moller, Prof. Dr. I.Wendt, Dr. W. Irber, Dr. G. Zulauf and Jan Lindsay for criticallyreviewing the manuscript.

References

Abdullah N, Grauert B, Krohe A (1994) U—Pb- und Rb—Sr-Unter-suchungen von Metagraniten der Mylonitzone von Floss-Alten-hammer und einer Probe des Leuchtenberger Granits. Abstract ofthe 7th colloquium of the German Continental Deep-DrillingProject (KTB), 2—3 June 1994, Giessen

Bailey SW (1984) Classification and structures of the micas. RevMineral 13 : 1—12

Behr HJ, Grosse S, Heinrichs T, Wolf U (1989) A reinterpretation ofthe gravity field in the surroundings of the KTB drill site — im-plications for granite plutonism and terrane tectonics in the Varis-can. In: Emmermann R, Wohlenberg J (eds) The GermanContinental Deep Drilling Programme (KTB). Springer, BerlinHeidelberg, New York, pp 501—526

Behr HJ (1992) Lineare Strukturen im Umfeld der KTB-Lokation.KTB Rep 92-3 : 3—82

Besang C, Harre W, Kreuzer H, Lenz P, Muller P, Wendt I(1976) Radiometrische Datierung, geochemische und petro-graphische Untersuchungen der Fichtelgebirgsgranite.Geol JahrbE8 : 3—71

Blız\ kovsky M, Burda M, Ibrmajer J, Jakubcova{ I, Pick M,Suk M, Vyskc\ il V (1985a) Modelling of the density distributionof the Bohemian massif — density distribution of the litho-sphere. International Workshop, 28—31 May 1985, ETH Zurich,pp 1—11

Blız\ kovsky M, Novotny A, Suk M (1985b) Review of gravity ele-ments in the Bohemian massif (in Czech). Ve\ st Ustr\ Ust geol60 : 143—154

Blız\ kovsky M, Pokorny L, Weiss J (1975) Structural scheme of theBohemian massif based on geophysical data. Ve\ st Ustr\ Ust geol50 : 1—8

Bosum W, Casten U, Heyde I, Rottger B (1994) Integrated inter-pretation of gravity and magnetic data of the KTB main well andthe surrounding area. KTB Rep 94-2 : A 143

Breiter K, Siebel W (1995) Granitoids in the Rozvadov pluton. GeolRundsch 84 : 506—519

Bucker C (1986) Die Anomalien der Schwere im Bereich der KTB-Lokation Oberpfalz und ihre Interpretation. Thesis, Univ ofMunich, pp 1—130

Carl C, Wendt I (1993) Radiometrische Datierung der Fichtelge-birgsgranite. Z geol Wiss 21 : 49—72

Carl C, Wendt I, Wendt JI (1989) U/Pb whole-rock and mineraldating of the Falkenberg granite in northeast Bavaria. EarthPlanet Sci Lett 94 : 236—244

Casten U (1990) Gravimetrie in der KTB-Pilotbohrung. KTB Rep90-6a : 23—29

Casten U (1994) Untertagegravimetrie zur in situ Bestimmung desGesteinsparameters Dichte und zur Erfassung bergbauinduzieren-der Dichteanderungen. Berichte des Instituts fur Geophysik derRuhr-Universitat Bochum, Reihe A no. 39, pp 1—24

Chappell BW, White AJR (1974) Two contrasting granite types.Pacific Geol 8 : 173—174

Chlupac\ ova M (1993) Geologicky model zapadnı casti ceskehomasıvu ve vazabe na ultrahlubovy vrt (KTB-1) v SRN. Cast II:Hustoty, magnetismus, elasticita a radioaktivita. Geofyzika, a.s,Brno

Christiansen ES, Stuckless JS, Funkhouser-Marolf MJ, Howell KH(1988) Petrogenesis of rare-metal granites from depleted crustalsources: an example from the Cenozoic of western Utah, USA.Can Inst Min Metall (Spec Vol) 39 : 307—321

Didier J, Lameyre J (1969) Les granites du Massif Central franiais:etude comparee des leucogranites et granodiorites. Contrib Min-eral Petrol 24 : 219—238

Dorr W, Zulauf G, Schastok J, Scheuvens D, Vejnar Z, Wemmer K,Ahrendt H (1996) The Tepla-Barrandian/Moldanubian S. Str.boundary: Preliminary geochronological results from fault-relatedplutons. Terra Nostra 9612 : 34—38

Ernst T, Gehlen K von (1962) Entkieselung durch bevorzugteSerizitisierung von Quarz in einem Oberpfalzer Granit. ChemieErde 22 : 83—90

Fiala V (1980) Die hydrothermale Verwandlung des Bor-Granits. I.Fol Mus Rer Natur Bohem Occid Plzen\ Geol 16 : 1—28

Fischer G (1965) U® ber die modale Zusammensetzung der Eruptivaim ostbayerischen Kristallin. Geol Bavarica 55 : 7—33

Foster MD (1960) Interpretation of the composition of trioctahedralmicas. US Geol Surv Prof Pap 354-B : 1—49

Franke W (1989) The geological framework of the KTB drill site,Oberpfalz. In: Emmermann R, Wohlenberg J (eds) The GermanContinental Deep Drilling Program (KTB). Springer, BerlinHeidelberg New York, pp 37—54

Friese K (1990) Pb-Isotopengeochemische Untersuchungen an Ge-steinen und Mineralen der Oberpfalz und des Harzes. Thesis,Univ Gottingen, pp 1—124

Fuchs HK (1979) Untersuchungen am Westabbruch der Bohmi-schen Masse im Oberfrankisch-Oberpfalzischen Bruchschollen-land. Thesis, Univ Munich, pp 1—115

S61

Page 18: Granitoid magmatism of the NW Bohemian massif revealed: gravity data, composition, age relations and phase concept

Gatto H, Casten U (1989) Bohrlochgravimetrisch ermittelte Dichte(BGHM) im Vergleich zur Logdichte (RHOB). KTB Rep 90-1 :247—263

Green TH (1976) Experimental generation of cordierite- and garnet-bearing granitic liquids from a pelitic composition. Geology 4 :85—88

Hecht L (1993) Die Glimmer als Indikatoren fur die magmatischeund postmagmatische Entwicklung der Granite des Fichtel-gebirges (NE Bayern). Munchener geol Hefte 10 : 1—221

Hecht L (1994a) The chemical composition of biotite as an indi-cator of magmatic fractionation and metasomatism in Sn-specialised granites of the Fichtelgebirge (NW Bohemian massif,Germany). In: Seltmann R, Kampf H, Moller P (eds) Metallo-geny of collisional orogens. Czech Geol Survey, Prague, pp295—300

Hecht L (1994b) Biotites as petrogenetic indicators in Hercyniangranites of the Fichtelgebirge (NW Bavaria, Germany). In: Ab-stracts of the 16th General Meeting of the International Min-eralogical Association, SIMP, Univ Pisa, 4—9 September 1994,Pisa, p. 171

Hecht L, Henney P, Morteani G, Spiegel W (1989) Enclaves in theHercynian granites of the Fichtelgebirge, FRG: evidence of crustaland mantle input to granite magmatism. EUG 5, Terra Nova(abstract suppl 1) 1 : 282

Hecht L, Spiegel W, Morteani G (1993) Genetic studies of thegranites of the Fichtelgebirge — a contribution to crustal evolutionat the border of the Saxothuringian and Moldanubian zones.KTB Rep 93-2 : 403—405

Hecht L, Spiegel W, Morteani G (1994) Geochemistry and petro-graphy of unaltered granites and their host rocks — Fichtel-gebirge granites. In: Haslam HW, Plant JA (eds) Granites,metallogeny, lineaments and rock-fluid interactions. BritishGeol Survey Research Report SP/94/1, 143—177, Keyworth,Nottingham

Hecht L, Vigneresse JL, Morteani G (1997) Constraints on theorigin of zonation of the granite complexes in the Fichtelgebirge(Germany and Czech Republic): evidence from a gravity andgeochemical study. Geol Rundsch 86, Suppl: S93—S109

Hofmann B (1992) Die metamorphe Geschichte des KontakthofesSteinach und seiner Rahmengesteine. Thesis, Univ Munich, pp1—169

Holl PK (1988) Isotopengeochemische Untersuchungen basischerund intermediarer Magmatite — Genese und Altersstellung redwit-zitischer Gesteine Nordostbayerns. Thesis, Univ Munich, pp1—150

Holl PK, Drach V von, Muller-Sohnius D, Kohler H (1989)Caledonian ages in Variscan rocks: Rb—Sr and Sm—Nd iso-tope variations in dioritic intrusives from the northwesternBohemian massif, West Germany. Tectonophysics 157 :179—194

Ibrmajer J (1971) Gravity anomalies and the structure of the earth’scrust on the territory of Czechoslovakia. In: Upper-mantle pro-ject-program in Czechoslovakia 1962—1970, Final report, Geo-physics, collected papers. Academia, Prague, 166 pp

Ibrmajer J et al. (1989) Geofyzikalni obraz CSSR (Geophysicalimage CSSR), 354, Prague

Irber W, Forster H-J, Hecht L, Moller P, Morteanı G (1977) Experi-mental, geochemical, mineralogical and O-isotope constraintson the late-magmatic history of the Fichtelgebirge granites(Germany). Geol Rundsch 86, Suppl: S110—S124

Jurdy DM, Phinney RA] (1983) Seismic imaging of the Elbertongranite, inner Piedmont, Georgia using COCORP southern Ap-palachian data. J Geophys Res 88 : 5863—5873

Kleemann U (1991) Die P—T—t—d-Entwicklung im Grenzbereichzwischen der Zone von Erbendorf-Vohenstrauss (ZEV) und demMoldanubikum in der Oberpfalz/NE-Bayern. Thesis, UnivBochum, pp 1—218

Kohler H (1970) Die A® nderung der Zirkonmorphologie mit demDifferentiationsgrad eines Granits. N Jahrb Mineral Mh1970 : 405—420

Kohler H, Holzl S (1996) The age of the Leuchtenberg granite(NE Bavaria, Germany) a revision on account of new U—Pb zirconages. N Jahrb Mineral Mh 1996 : 212—222

Kohler H, Muller-Sohnius D (1976) Erganzende Rb—Sr Altersbe-stimmungen an Mineral- und Gesamtgesteinsproben des Leuch-tenberger und des Flossenburger Granits (NE Bayern). N JahrbMineral Mh 8 : 354—365

Kohler H, Muller-Sohnius D, Cammann K (1974) Rb—Sr Altersbe-stimmungen an Mineral- und Gesamtgesteinsproben des Leuch-tenberger und Flossenburger Granits, NE Bayern. N Jahrb Min-eral Abh 123 : 63—85

Kohler H, Propach G, Troll G (1989) Exkursion zur Geologie,Petrographie und Geochronologie des NE-bayerischen Grund-gebirges. Eur J Mineral Beiheft 1 (2) : 1—84

Krohe A, Abdullah N, Grauert B (1994) Mikrogefuge-Untersuchun-gen am Leuchtenberger Granit und an Metagraniten der Mylonit-zone von Floss-Altenhammer. KTB Rep 94-2 : B 38

LaCroix A (1920) Les roches eruptives du Cretace pyreneen et lanomenclature des roches eruptives modifiees. Comptes RenduesAcad Sci Fr 170 : 685—690

Lenz H (1986) Rb/Sr-Gesamtgesteins-Altersbestimmung am Weis-senstadt-Marktleuthener Porphyrgranit des Fichtelgebirges. GeolJahrb E 34 : 67—76

London D (1995) Geochemical features of peraluminous granites,pegmatites, and rhyolites as sources of lithophile metal deposits.In: Thompson JFH (ed) Magmas, fluids, and ore deposits. MineralAssoc Can Short Course 23 : 175—202

Madel J (1968) Magmatische Entwicklung der Massivgranite dernordlichen Oberpfalz. Thesis, Univ Munich, pp 1—72

Madel J (1975) Geochemical structures in a multiple intrusion gran-ite massif. N Jahrb Mineral Abh 124 : 103—127

Maier M, Stockhert B (1992) Conditions of crystallization anddeformation of the Falkenberg granite, eastern Bavaria, Germany.KTB Rep 92-4 : 277—286

Matthes S (1951) Die kontaktmetamorphe U® berpragung basischerkristalliner Schiefer im Kontakthof des Steinwald-Granits nord-lich von Erbendorf in der bayrischen Oberpfalz. N Jahrb MineralAbh 82 : 1—92

Matthes S, Richter P (1990) Granitisch-quarzdioritische Apo-physen und redwitzitische Randzone des Falkenberger Granit-plutons im nordlichen Oberpfalzer Wald. Geol Bavarica 95 :101—132

Matthews DH (1986) Can we see granites on reflection profiles? AnnGeophys 5B : 353—356

Nachit H, Razafimahefa N, Stussi JM, Carron JP (1985) Composi-tion chimique des biotite et typologie magmatique des granitoides.CR Acad Sci Paris 301 : 813—822

Odin GS (1994) Geological time scale 1994. Comptes Rendues AcadSci Paris, 318, Serie II : 59—71

Okrusch M (1971) Garnet—cordierite—biotite equilibria in theSteinach Aureole, Bavaria. Contrib Mineral Petrol 32 : 1—23

Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrim-ination diagrams for the tectonic interpretation of granitic rocks.J Petrol 25 : 956—983

Plaumann S (1986) Die Schwerekarte der Oberpfalz und ihre Bezugezu Strukturen der oberen Kruste. Geol Jahrb E 33 : 5—13

Plaumann S (1988) Kompilation einer Schwerekarte fur die west-liche CSSR, das Erzgebirge (DDR) und Nordostbayern. Z dt geolGes 139 : 177—190

Plaumann S (1995) Die Schwerekarte 1 : 500 000 der BundesrepublikDeutschland (Bouguer-Anomalien), Blatt Sud. Geol JahrbE53 : 3—13

Polansky J (1973) Depth geological crosscuts through the Bohemianmassif. Geol Pruzk 15(6) : 161—167 (in Czech)

Polansky J, S[ kvor V (1975) Strukturne tektonicka problematikaseverozapadnich. Sbornik geol ve\ d 13 : 47—64

Pratt TL, Costain JK, Coruh C, Glover L, Robinson ES (1985)Geophysical evidence for an allochthonous Appalachian gran-itoid beneath the basement surface of the coastal plain nearLumberton, North Carolina. Geol Soc Am Bull 96 : 1070—1076

S62

Page 19: Granitoid magmatism of the NW Bohemian massif revealed: gravity data, composition, age relations and phase concept

Richter P, Stettner G (1979) Geochemische und petrographischeUntersuchungen der Fichtelgebirgsgranite. Geol Bavarica78 : 1—127

Richter P, Stettner G (1987) Die Granite des Steinwaldes (Nordost-Bayern) — ihre petrographische und geochemische Differen-zierung. Geol Jahrb D 86 : 3—31

Schodlbauer S, Hohndorf A, Hecht L, Morteani G (1995) Theenclaves of the Kosseine granites as indicators of the genesis of theFichtelgebirge granites. Contributions to the 8th annual KTBcolloquium, 25—26 May 1995, Giessen, pp 12—15

Schodlbauer S, Hecht L, Hohndorf A, Morteani G (1997) Enclavesin the S-type granites of the Kosseine massif (Fichtelgebirge,Germany): implications for the origin of granites. Geol Rundsch86, Suppl: S125—S140

Siebel W (1993a) Der Leuchtenberger Granit und seine assoziiertenmagmatischen Gesteine: Zeitliche und stoffliche Entwicklungs-prozesse im Verlauf der Entstehung des Nordoberpfalz-Plutons.Thesis, Univ Heidelberg, pp 1—308

Siebel W (1993b) Geochronology of the Leuchtenberg granite andassociated redwitzites. KTB Rep 93-2 : 411—415

Siebel W (1994) Inferences about magma mixing and thermal eventsfrom isotopic variations in redwitzites near the KTB site. KTBRep 94-3 : 157—164

Siebel W (1995a) Constraints on Variscan granite emplacement inNE-Bavaria, Germany: further clues from an isotopic study of theMitterteich granite. Geol Rundsch 84 : 384—398

Siebel W (1995b) Anticorrelated Rb—Sr and K—Ar age discordances,Leuchtenberg granite, NE Bavaria, Germany. Contrib MineralPetrol 120 : 197—211

Siebel W, Hohndorf A, Wendt I (1995) Origin of late Variscangranitoids of NE Bavaria, Germany, exemplified by REE and Ndisotope systematics. Chem Geol 125 : 249—270

Siebel W, Breiter K, Henjes-Kunst F, Hohndorf A, Rene{ M, WendtI (1996) Rb—Sr, K—Ar geochronology and Nd isotopic study ofcontrasting granitoid massifs in western Bohemia. J Conf Abstr1(1) : 569

S[ mejkal V (1964) Absolute age of some magmatic and metamorphicrocks from the Bohemian massif according to K—Ar method. Sborgeol Ve\ d r\ ada G4 : 121—136 (in Czech)

Speer JA (1984) Micas in igneous rocks. Rev Mineral 13 : 299—356S[ temprok M (1992) The geochemistry of the Czechoslovak part of

the Smrc\ iny/Fichtelgebirge granite pluton. C[ asopis Mineral Geol37 : 1—19

Stettner G (1958) Erlauterungen zur Geologischen Karte vonBayern 1 : 25 000, map sheet no. 5937 Fichtelberg. BayerischesGeologisches Landesamt, Munich, pp 1—116

Stettner G (1992) Geologie im Umfeld der Kontinentalen Tiefboh-rung Oberpfalz. Einfuhrung und Exkursionen. Bayerisches Geo-logisches Landesamt, Munich, pp 1—240

Tavakkoli B (1985) Das Granitmassiv von Flossenburg. Thesis,Technical Univ Munich, pp 1—190

Tomas J (1971) Geology and petrography of the Rozvadov massif inwest Bohemia. Sbor geol Ve\ d 19 : 99—121 (in Czech with Englishabstract)

Troll G (1968) Gliederung der redwitzitischen Gesteine Bayernsnach Stoff- und Gefugemerkmalen. Teil I: Die Typlokalitat vonMarktredwitz in Oberfranken. Bayerische Akad Wiss Abh 133 : 1—86

Trzebski R (1997) Morphogenesis, tectonic setting and intrusiondynamics of Variscan granites at the northwestern margin of theBohemian massif. Gottinger Arbeiten zur Geologie und Palaon-tologie 69 : 1—66

Trzebski R, Behr HJ, Conrad W (1997) Subsurface distribution andtectonic setting of the late-Variscan granites in the North WesternBohemian Massiv, Geol Rundsch 86, Suppl : S64—S78

Vejnar Z (1960) Der tschechoslowakische Teil des fichtelgebirgi-schen Granitmassivs. Sbor Ustr\ Ust geol 1 : 217—285

Vejnar Z (1962) Zum Problem des absoluten Alters der kristallinenSchiefer und der Intrusiva des westbohmischen Kristallins. Krys-talinikum 1 : 149—159

Vejnar Z, Neuz\ ilova M, Syka J (1969) Geology and petrography ofthe Bor massif. Ve\ st Ustr\ Ust geol 44 : 247—257 (in Czech)

Vigneresse JL, Cornwell JD (1994) The Fichtelgebirge and adjacentgranites, Germany. In: Haslam HW, Plant JA (eds) Granites,metallogeny, lineaments and rock—fluid interactions. British GeolSurvey Research Report SP/94/1, 59—65, Keyworth, Nottingham

Voll G (1960) Stoff, Bau und Alter in der Grenzzone Mol-danubikum/Saxothuringikum in Bayern unter besondererBerucksichtigung gabbroider, amphibolitischer und kalk-silikatfuhrender Gesteine. Beih geol Jahrb 42 : 1—182

Vollbrecht A, Weber K, Schmoll J (1989) Structural model for theSaxothuringian—Moldanubian suture in the Variscan basement ofthe Oberpfalz (northeastern Bavaria, F.R.G.) interpreted fromgeophysical data. Tectonophysics 157 : 123—133

Weber K, Vollbrecht A (1989) The crustal structure at the KTB drillsite, Oberpfalz. In: Emmermann R, Wohlenberg J (eds) The Ger-man Continental Deep Drilling Program (KTB). Springer, BerlinHeidelberg New York, pp 5—36

Wendt I (1993) Isochron or mixing line? Chem Geol 104 : 301—305Wendt I, Kreuzer H, Muller P, Schmid H (1986) Gesamtgesteins-

und Mineraldatierungen des Falkenberger Granits. Geol JahrbE34 : 5—66

Wendt I, Hohndorf A, Kreuzer H, Muller P, Stettner G (1988)Gesamtgesteins- und Mineraldatierungen der Steinwaldgranite(NE-Bayern). Geol Jahrb E42 : 167—194

Wendt I, Carl C, Kreuzer H, Muller P, Stettner G (1992) ErganzendeMessungen zum Friedenfelser Granit (Steinwald) und radiome-trische Datierung der Ganggranite im Falkenberger Granit. GeolJahrb A137 : 3—24

Wendt I, Ackermann H, Carl C, Kreuzer H, Muller P, StettnerG (1994) Rb/Sr-Gesamtgesteins- und K/Ar-Glimmerdatierungender Granite von Flossenburg und Barnau. Geol Jahrb E 51 : 3—29

Wulf S, Dorr W, Zulauf G, Scheuvens D, Vejnar Z (1996) TheTepla-Barrandian/Moldanubian boundary: zircon typology offault-related alkalic and calc-alkalic plutons. Terra Nostra 96/2:196—205

Wones DR, Eugster HP (1965) Stability of biotite: experiment,theory, and application. Am Mineral 50 : 1228—1272

Zulauf G (1994) Ductile normal faulting along the West Bohemianshear zone (Moldanubian/Tepla—Barrandian boundary): evi-dence for late Variscan extensional collapse in the Variscan In-ternides. Geol Rundsch 83 : 276—292

Zulauf G, Maier M, Stockhert B (1997) Depth of intrusion andthermal modeling of the Falkenberg granite (oberpfalz, Germany).Geol Rundch 86, Suppl : S87—S92

.

S63


Recommended