+ All Categories
Home > Documents > Fakultät für Chemie - Universität Bielefeld

Fakultät für Chemie - Universität Bielefeld

Date post: 12-Mar-2022
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
36
Fakultät für Chemie Ausgabe 7/2005 Universität Bielefeld
Transcript

Fakultät für Chemie

Ausgabe 7/2005

Universität Bielefeld

Herausgeber:Fakultät für Chemieder Universität BielefeldPostfach 10 01 31, 33501 Bielefeldwww.uni-bielefeld.de/chemie/index.html

Redaktion:Dr. Andreas Mix, Tel.: 6180e-Mail: [email protected]

Umschlagsgestaltung:Doris Voss, Universität Bielefeld

Druck:Hans Gieselmann Druck & Medienhaus, Bielefeld

3

Willkommen

Chemie ist Leben. Chemie ist Veränderung. Chemieist Fortschritt. Chemie bedeutet, sich aktiv an derGestaltung unserer Zukunft zu beteiligen. Chemie istSpaß an der Zukunft. Wir brauchen engagierte, auf-geschlossene, junge Menschen, die sich den zukünf-tigen Aufgaben in der Chemie stellen.Wir freuen uns deshalb ganz besonders über IhrInteresse und möchten Ihnen auf den nächstenSeiten die Fakultät für Chemie der UniversitätBielefeld vorstellen. Wir möchten Ihnen die vielfälti-gen Möglichkeiten zeigen, die die Fakultät bietet, Sieauf die zukünftigen Herausforderungen in derChemie vorzubereiten.Die Fakultät wurde 1975 gegründet. Sie ist damitnoch vergleichsweise jung. Zur Zeit forschen hier 16Professorinnen und Professoren sowie 3 Dozentenmit ihren Mitarbeiterinnen und Mitarbeitern. DieBielefelder Chemiker haben in den zurückliegendenJahren immer wieder herausragende und vielbeach-tete Forschungsarbeiten in den unterschiedlichstenBereichen der Chemie geleistet und damit wichtigeBeiträge zum Grundverständnis elementarerProzesse in der Natur geliefert. Viele Mitglieder derFakultät wurden für ihre Arbeiten mit national undinternational hochrangigen Preisen, Mitgliedschaftenin Wissenschaftsakademien und Gastprofessurenausgezeichnet.

Alles unter einem DachDie Aufgaben der Zukunft werden zunehmend kom-plexer. Grenzen in der Wissenschaft verschwinden,werden durch interdisziplinäres Arbeiten überwun-den.Das Konzept der kurzen Wege innerhalb derUniversität Bielefeld eröffnet vielfältige Möglich-keiten zur Kooperation sowohl innerhalb derFakultät als auch interdisziplinär zwischen den ein-zelnen Fakultäten. Wir nutzen diese Chancen durchEinrichtung von Sonderforschungsbereichen undForschergruppen, in denen wir uns beispielsweise mit biochemischen Grundlagen von medizinischenund biologischen Prozessen, Anwendungen vonComputern in der Biochemie, Nano-Strukturen undintelligenten Materialien beschäftigen.

Räumliche Grenzen verschwindenBei uns ist Internationalität kein Fremdwort. Wir för-dern aktiv einen umfangreichen Austausch vonStudentinnen und Studenten mit internationalrenommierten Universitäten und Forschungsein-richtungen. Sie haben bei uns die Chance, Er-fahrungen im Ausland zu sammeln.

Sprechen Sie mit uns. Wir freuen uns auf Sie.

Die Dekanin

Prof. Dr. Gisela Lück

Der Prodekan

Prof. Dr. Uwe Manthe

Studiendekan

Dr. Hans-Georg Stammler

4

Welcome

Chemistry is change, evolution, life. Chemistry playsan important role in shaping our future, and takingpart in this process is certainly rewarding. We needopen-minded, motivated talented young men andwomen who adapt this challenge, and who see theirown future to these vast and attractive possibilities.Thank you for your interest in the Faculty ofChemistry at Bielefeld University which we introdu-ce to you in the following pages. On this occation,we would also like to give you an overview ofmodern chemistry and inform you about the possibi-lities to shape up for chemical problems of tomorrowwith the aid of our research and education pro-grammes.Our faculty is still quite young and was founded in1975; at present, 16 professors and 3 lecturers repre-sent the faculty together with their associates in tea-ching and research. Bielefeld chemists have conti-nuously contributed with excellent and internatio-nally well-received results in a variety of fields to thedetailed understanding of chemical processes innature, technology and life. Bielefeld scientists havebeen rewarded with high-ranking prizes, academymemberships and prestigious lectureships.

Interdisciplinary ApproachesThe increasing complexity in research and educationneeds interdisciplinary approaches. Limits betweendisciplines tend to vanish, and collaborative efforts ofteams joining different expertise and backgroundsare needed to tackle the questions and problems ofthe future. Short distances in the unique universitybuilding facilitate collaboration within the facultyand with other disciplines. The success of thisBielefeld concept is demonstrated and corroboratedby the establishment of large interdisciplinary rese-arch structures, addressing e.g. biochemical implica-tions of medical and biotechnological processes,computer methods in biochemistry, nanostructuresand smart materials, and other developing areas.

Crossing BoundariesInterdisciplinarity is matched by an internationalapproach. We actively support international exchan-ge of students and research associates with a largenumber of renowned institutions all over the world.You are welcome from abroad to study chemistry inBielefeld. You are welcome to Bielefeld to pursuepart of your education abroad.

Do meet us. We look forward to meeting you andwelcome you to Bielefeld.

Dean

Prof. Dr. Gisela Lück

Vice-Deans

Prof. Dr. Uwe Manthe

Dr. Hans-Georg Stammler

5

The Faculty of Chemistry

Universität Bielefeld

Fakultät für Chemie

Universitätsstraße 25

D-33613 Bielefeld

Postfach 10 01 31

33501 Bielefeld

Phone: (05 21) 106-6134

Fax: (05 21) 106 - 6146

E-Mail: [email protected]

http://www.uni-bielefeld.de/chemie

Students Organisation / Fachschaft:

Phone: (05 21) 106 - 6147

E-Mail: [email protected]

http://www.uni-bielefeld.de/chemie/fachschaft

6

Studiengänge

Im Zuge der europaweiten Harmonisierung desAusbildungs- und Arbeitsmarktes hat die Fakultät fürChemie ihre Diplom- und Lehramtsstudiengängezum Wintersemester 2004/2005 vollständig auf dasBachelor/Master System umgestellt. Dies schaffteine internationale Vergleichbarkeit und Transparenzder Studienleistungen und eröffnet die Möglichkeit,flexibler und früher als bisher einen Abschluss zuerlangen, der berufliche Einstiegsoptionen eröffnet.

Bachelor-Studiengänge in Chemie und BiochemieDie Bachelor-Studiengänge sehen eine breit ange-legte modulare Ausbildung vor. Dabei kann Chemieals Kern- oder Nebenfach gewählt und mit einembeliebigen Fach kombiniert werden. Die Ein-Fach-Struktur des Diploms in Chemie bzw. Biochemie wirdüber die Kombination des Kernfaches Chemie mitdem Nebenfach „Chemie der Materialwissen-schaften“ bzw. „Chemie der Lebenswissenschaften“in das Konsekutivmodell überführt. Bei Wahl einesnicht-chemischen Nebenfaches werden im Kernfachfolgende Profile angeboten:

• Grundlagen der Chemie• Vermittlung der Naturwissenschaften (Berufsziel

Lehrer Grund-, Haupt- und Realschule)• Gymnasium/Gesamtschule (Berufsziel Lehrer

Gymnasium/Gesamtschule)

In den ersten beiden Semestern des Bachelor-Studiengang werden Grundlagen in AllgemeinerChemie sowie je nach Profilwahl in Mathematik undPhysik oder Biologie vermittelt (Basis-Module). Imdritten und vierten Semester sind Vertiefungsmoduleaus den einzelnen Teilbereichen der Chemie vorge-sehen. Im fünften und sechsten Semester erfolgteine Vertiefung der einzelnen Teilbereiche derChemie je nach Profilwahl in den Wahlpflicht-modulen. Den Abschluss des Studienganges bildeteine Bachelor-Arbeit im 6. Semester.

Master-StudiengängeDie weiterführenden, 4-semestrigen Master-Studiengänge in Chemie und Biochemie bauen aufdem Bachelor-Studiengang auf. Sie sehen eineSpezialisierung durch entsprechende Profilwahl ineinem Teilbereich der Chemie vor. Der Studiengangist ebenfalls modular aufgebaut. Den Abschluss bil-det eine Master-Arbeit im zehnten Semester.Der Master-Grad ersetzt das bisherige Diplom undberechtigt zum Promotionsstudiengang.

PromotionsstudiengangDer Promotionsstudiengang sieht die Anfertigungeiner wissenschaftlichen Forschungsarbeit in einemFachbereich der Chemie vor. Den Abschluss bildetdie Promotion mit Verleihung des Doktorgrades.

Studienberatung

Dr. Herbert Wenzel Raum F4-133Tel. 0521/106 -20 91

Dr. Ulrich Neuert Raum F3-133Tel. 05 21/106 -2070

Dr. Hans-Georg Stammler Raum E4-118Tel. 0521/106-6165

Weitere Informationen auf der Homepagehttp://www.uni-bielefeld.de/chemie/fachschaft

7

Courses of Chemistry

In the wake of a harmonized European educationaland employment standard, the Department of theChemistry of University of Bielefeld has switched toBachelors’ and Masters’ studies from the 2004/2005winter-semester. This restructuring essentially ena-bles the courses to be internationally comparable,more transparent in the context of student evaluati-on; early completion of course works hitherto notpossible; and thereby opening up new possibilities inthe context of employment opportunities.

Bachelor studies in Chemistry and BiochemistryThe Bachelor's study provides a broad and flexiblemodule of education. Chemistry can be chosen as acore or a parallel course and can be combined withany other courses. The single Bachelor study (Ein-Fach-Bachelor) replaces the Diploma study inChemistry and Biochemistry by combining the corestudy Chemistry with the parallel course “Chemistryof Materials Science” or “Chemistry of Life Science”,respectively. In combination with a non-chemicalparallel course the following profiles are offered:

• Fundamentals of Chemistry• Teaching Chemistry (intended carrer: teacher at

primary schools and the first level of secondaryschools (Grund-, Haupt- und Realschule)).

• Teaching Chemistry (intended career: teacher atthe second (senior) level of secondary schools(Gymnasiale Oberstufe)).

In the first two semesters of Bachelor’s study thefundamentals of general chemistry can be studiedtogether with mathematics and physics or biology(Basic modules). The third and fourth semester arescheduled for a ‘deepening of understanding’ on anysub-discipline of chemistry. The fifth and sixth seme-ster is scheduled for further deepening on any sub-discipline of chemistry as per the profile opted by thestudent. The Bachelor’s study ends with the success-ful completion of a Bachelor-thesis (Bachelor-Arbeit)in sixth semester.

Master’s studies:The Master’s studies in Chemistry and Biochemistry,follows for 4 semester after successful completion ofthe Bachelor’s studies. The specialization in theMaster’s can be done in any available sub-disciplinein chemistry as per the profile opted by the student.The structure of the Master’s study is also modular.The study ends as well with the successful completi-on of Master’s thesis (Master-Arbeit) in tenth seme-ster. The Master’s graduate is equivalent to the pre-vious Diplom graduates and is eligible for doctoralstudies (Promotion).

Doctoral studies:The doctoral studies in Chemistry involve fundamen-tal research in any of the disciplines of interest of thesubject and are completed with the successful com-pletion of the doctoral dissertation and defence ofthe thesis.

Further Information

Dr. Herbert Wenzel Room F4-133Tel. 0521/106 -20 91

Dr. Ulrich Neuert Room F3-133Tel. 05 21/106 -2070

Dr. Hans-Georg Stammler Raum E4-118Tel. 0521/106-6165

Homepagehttp://www.uni-bielefeld.de/chemie/fachschaft

8

Forschung

In der Forschung an der Fakultät für Chemie derUniversität Bielefeld werden aktuelle Themen ausden folgenden Bereichen der Grundlagenforschungbearbeitet:

• Neue Materialien• Molekulare Erkennung• Biochemische Grundlagen medizinischer und bio-

technologischer Prozesse

Das offene Konzept unserer Universität fördertInterdisziplinarität sowohl innerhalb der klassischenBereiche der Chemie als auch fakultätsübergreifend.Viele dieser Projekte werden in Sonderforschungs-bereichen und Forschergruppen durch die DeutscheForschungsgemeinschaft finanziell gefördert.

Anorganische und Bioanorganische ChemieDie Forschung in diesem Bereich beschäftigt sich imWesentlichen mit der Synthese von supramolekula-ren anorganischen und metallorganischen Ver-bindungen und mit Aspekten aus dem Bereich derphysikalisch-anorganischen Chemie. Die Themenreichen von der Entwicklung neuer leistungsfähigerKatalysatoren in der Alken- und Alkinpolymerisationbis hin zu maßgeschneiderten Ausgangsver-bindungen für die Dünnschicht-Technologie. Haupt-gruppenelemente in ungewöhnlichen Oxidations-stufen und Bindungssituationen werden ebenfallsuntersucht. Unterschiedlichste Aspekte aus demBereich der supramolekularen anorganischenChemie, z.B. Selbstorganisation von ball- und radför-migen Strukturen und ihre Anwendung als nützlicheMaterialien sind ebenfalls Herausforderungen in der Forschung. Als Bindeglied zu den Bio-Wissenschaften werden Modellsubstanzen für diebiologische Stickstoff-Fixierung entwickelt und dieelementaren Mechanismen der an diesem biologischwichtigen Prozess beteiligten Enzyme untersucht.

Organische, Bio-Organische und Physikalisch-Organische ChemieUnsere Forschungsinteressen reichen von Unter-suchungen der Grundlagen chemischer Reaktionenbis zu Mehrstufen-Synthesen und Anwendungenspeziell entwickelter organischer Verbindungen inTechnik und Biochemie. Die Forschungsthemenbeinhalten den Aufbau ungewöhnlicher Gerüst-Strukturen zur Untersuchung intrinsischer molekula-rer Eigenschaften, zur Erzeugung speziellerSynthese-Bausteine und zur Identifizierung speziellerintermolekularer Wechselwirkungen in derSupramolekularen Chemie. Hier werden unter ande-rem auch gezielt grundlegende photochemischeReaktionen verwendet. Die Prinzipien der molekula-ren Erkennung werden an künstlichen und natürli-chen Rezeptorsystemen mit Hilfe moderner spektro-

skopischer Methoden untersucht (Einzelmolekül-Prozesse). Neuartige Makromoleküle werden herge-stellt und hinsichtlich ihrer Materialeigenschaftenstudiert. Natürliche und nicht-natürliche Ver-bindungen werden synthetisiert, um die Wechsel-wirkung zwischen Bio-Molekülen zu beeinflussenund daraus neue Erkenntnisse über biochemischeund biologische Prozesse zu gewinnen. AuchPflanzeninhaltsstoffe werden aus natürlichenQuellen isoliert oder im Labor synthetisiert. All dieseAktivitäten sind eng mit der Entwicklung strukturel-ler und funktionaler Eigenschaften von Molekülen inbiologischen Systemen verknüpft.

Physikalische und Bio-Physikalische ChemieForschung auf diesem Gebiet umfasst die Analyseund Charakterisierung komplexer Reaktionssystememit Hilfe von Laser-Techniken und speziellen mas-senspektrometrischen Methoden. Beispiele sind dieBildung umwelt-relevanter Stoffe in Verbrennungs-prozessen und das Wachstum von Halbleiterma-terialien oder katalytisch aktiver dünnen Schichtenund Strukturen in der Gasphasen-Abscheidung.Kurzzeit-Lasermethoden werden für die Unter-suchung biochemische Systeme genutzt. DieForschung und Lehre beinhaltet auch dieUntersuchung der molekularen Mechanismen che-misch-elektrischer Feldeffekte, wie zum BeispielIonenkanal-Aktivität in Membranen, sowie dieGrundlage von Nerven- und Muskelfunktionen.

BiochemieEine Forschungsrichtung beschäftigt sich mit denSulfatasen, Enzymen mit erheblicher medizinischerRelevanz. Biochemische Studien werden begleitet vonstruktur- und zellbiologischen Untersuchungen unterEinbeziehung von Maus knock-out Modellen. AlsSubstrate stehen Heparansulfatproteoglycane imMittelpunkt des Interesses. Ihre Sulfatierungsmustervermitteln auf der Zelloberfläche Informationen für diekorrekte Entwicklung und Homöostase von Geweben.Einen anderen Schwerpunkt bildet die Analyse vonmolekularen Mechanismen des intrazellulärenTransports. Dabei werden insbesondere Proteine

9

untersucht, die an der Erkennung von Membranenund an deren Fusion beteiligt sind. Als Modellsystemewerden dazu Bäckerhefe und genetisch veränderteMäuse bzw. deren Zellen verwendet.Weitere Aktivitäten konzentrieren sich auf dieUntersuchung der Rolle von membranständigenMatrix-Metalloproteinasen (MT-MMPs) bei Wund-heilungsprozessen, neurodegenerativen Krankheitenund smooth muscle cells. Außerdem werden sog.ADAMs, eine weitere Klasse Membran-gebundenerMetallo-Proteinasen in Lymphocyten zur proteolyti-schen Abspaltung (shedding) von Oberflächen-rezeptoren und Liganden und die Rolle vonCalciumkanälen untersucht, die durch Säugetier-Trp-Homologe bei der Lymphocyten-Aktivierung gebil-det werden.

Theoretische ChemieDie Forschung in diesem Bereich beschäftigt sich mitder Dynamik chemischer Reaktionen und der elek-tronischen Struktur organischer und anorganischerVerbindungen. Ein wichtiges Themenfeld ist diegenaue Beschreibung elementarer chemischerReaktionsprozesse in der Gasphase und anOberflächen und die Untersuchung photochemi-scher Reaktionen, die auf einer Femtosekunden-Zeitskala ablaufen. Dazu werden quantenmechani-sche Effekte in den Computersimulationen zur mole-kularen Dynamik berücksichtigt und Methoden fürhochdimensionale Quantendynamikrechnungenentwickelt. Ein anderes Themenfeld sind quanten-chemische Rechnungen zur Beschreibung organi-scher und anorganischer Moleküle mit interessantenEigenschaften oder Strukturen. Neben diesenanwendungsbezogenen Rechnungen wird auch ander Entwicklung neuer relativistischer und nicht-rela-tivistischer ab initio Methoden gearbeitet.

Chemie-DidaktikDie Arbeiten auf diesem Gebiet beschäftigen sich mitder Entwicklung chemischer Experimente für dasfrühe Kindheitsalter (Kindergarten und erstenKlassen der Primarstufe), ein bis heute immer nochnahezu unerforschtes Feld. Ein weiterer Teilbereich

unserer Forschung umfasst die Evaluierung vonLernmedien für das frühe Kindheitsalter (TV, Bücher,chemische Zeitschriften). Außerdem untersuchen wirdie Lehre mit empirischen Methoden, um fehlendesVerständnis und Vorbehalte gegenüber der Chemiein der Öffentlichkeit abzubauen.

AusstattungDie Fakultät für Chemie bietet hervorragendeMöglichkeiten sowohl in der Forschung als auch inder Lehre. Alle Laboratorien und Geräte sind „untereinem Dach“ untergebracht und sind in kürzesterZeit erreichbar. Dies ist einzigartig und einMarkenzeichen der Universität Bielefeld. ZweiMillionen Bücher und Zeitschriftenbände derBibliothek sind frei zugänglich bis in dieNachtstunden und an Wochenenden ebenso wie derComputerzugang zu wichtigen Zeitschriften undKatalogen. Die Laboratorien und instrumentelleSpezialausrüstungen sind hervorragend ausgestattet.Für die ständig wachsenden Aufgaben im analyti-schen Bereich stehen unter anderem mehrereHochfeld-Kernresonanz- (NMR-) Spektrometer, ver-schiedene Massenspektrometer (u.a. FT-ICR-MS)und Röntgen-Diffraktometer zur Verfügung – alleauf dem neuesten Stand der Technik. FT-IR-, Raman,UV-VIS-, ESR- und kleinere GC/MS- und NMR-Spektrometer sowie eine Vielzahl weiterer Geräte fürdie verschiedensten Anwendungsbereiche sind inden einzelnen Arbeitsgruppen vorhanden. Nahezualle Büros sind mit Computern und Internetzugangausgestattet. Für Studierende gibt es Internet-Zugangsmöglichkeiten sowohl innerhalb derFakultät als auch im Rechenzentrum der Universität.Die Fakultät unterhält eigene Elektronik-, Mechanik-und Glasbläserwerkstätten. Dies ermöglicht sowohlkurze Reparaturzeiten als auch die schnelleAnfertigung komplexer individueller Apparaturen.

10

Research

The Faculty of Chemistry at the University ofBielefeld concentrates on fundamental research inthe following main themes:

• New materials• Molecular recognition• Biochemical basis of medical and

biotechnological processes.

The open concept of our university promotes inter-disciplinarity between the classical disciplines of che-mistry and also spans the faculties. Many of theseare financially supported in research structures(Sonderforschungsbereiche and Forschergruppen)by the Deutsche Forschungsgemeinschaft.

Inorganic and Bio-Inorganic ChemistryResearch in this field is dominated by supramolecu-lar inorganic and organometallic synthesis as well asby aspects of physical inorganic chemistry. Topicsspan from the development of new powerful cata-lysts in alkene and alkyne polymerisation to tailor-made precursors for thin film technology. Maingroup elements in unusual oxidation states and bon-ding situations are also studied. Several aspects ofsupramolecular inorganic chemistry, e.g. the self-organisation of ball- and wheel-shaped structuresand their use as versatile materials are challengingfrontiers of research. As an interface to life sciences,model substances for the biological nitrogen fixationare developed and the elemental mechanisms ofrelated enzymes involved in this biologically impor-tant process are elucidated.

Organic, Bio-Organic andPhysical Organic ChemistryOur research activities range from investigations onthe fundamentals of chemical reactions to multistepsyntheses and application of specifically designedorganic compounds in technology and biochemistry.The topics include the construction of unusual mole-cular frameworks in order to study intrinsic molecu-lar properties and to generate suitable buildingblocks and specific intermolecular interactions forsupramolecular chemistry. Among others, basic pho-tochemical processes are utilized in some of theapproaches. Artificial and natural receptor systemsare studied by means of modern spectroscopicmethods in order to gain insight into the principles ofmolecular recognition (single molecule processes).

Novel macromolecular assemblies are synthesizedand their material properties are investigated.Natural and non-natural compounds are synthesizedin order to affect, for example, the interaction bet-ween biomolecules or to gain new informationabout biochemical and biological processes. Naturalproducts are either isolated from plants or synthesi-zed. All these approaches are intimately connectedwith the evaluation of the structural and functionalproperties of the molecules in biological systems.

Physical and Biophysical ChemistryResearch in this area includes the analysis and cha-racterisation of complex reaction systems by lasertechniques and advanced mass spectrometricmethods. Examples are the formation of pollutants incombustion systems and the growth of semiconduc-tor materials or catalytically active films and structu-res in chemical vapour deposition. Short-pulse lasermethods are used for the investigation of biochemi-cal systems.Research and teaching also address the molecularmechanisms of chemical electric field effects such as,e. g. membrane ion channel activity underlyingnerve and muscle functions.

BiochemistryResearch is directed towards sulfatases, enzymeswith considerable medical impact. Biochemical,structural and cell biological investigations are per-formed including the generation and analysis ofmouse knock-out models. As substrates, heparansulfate proteoglycans are of major interest. Their sul-fation patterns at the cell surface carry importantinformation for the development and homeostasis ofvarious tissues.

11

Another focus is the investigation of molecularmechanisms of membrane traffic. Proteins are stu-died which participate in the recognition and fusionof membranes. Baker's yeast as well as geneticallymodified mice and their cells are used as modelsystems. Further activities concentrate on the func-tion of ADAMs, another class of membrane boundmetallo-proteinases in lymphocytes, for the proteo-lytic release (shedding) of surface receptors andligands. Finally, the role of calcium permeable chan-nels formed by mammalian Trp homologues in lym-phocyte activation is investigated.

Theoretical ChemistryThe Theoretical Chemistry group investigates thedynamics of chemical reactions and the electronicstructure of organic and inorganic compounds. Animportant area of research is the accurate descriptionof elementary chemical reaction processes in the gasphase and at surfaces and the investigation of photo-chemical reactions proceeding on a femtosecondtime scale. Quantum effects are included in compu-ter simulations studying the molecular dynamics ofthe processes. Methods for these multi-dimensionalquantum dynamics calculations are being developed.Another research direction uses quantum chemicalcalculations to investigate organic and inorganicmolecules with interesting structures or properties.Beside these applications also new relativistic andnon-relativistic ab initio methods are developed.

Chemical EducationWork in this addresses to the development of che-mical experiments specially for the early childhood(kindergarten and the first years of primary school)which is till now a mostly unknown field.

Another part concentrates on the evaluation of edu-cational media for the early childhood (TV, books,journals with chemical subjects).Furthermore, teaching is empirically investigated inorder to reduce lacking comprehension and missingacceptance of chemistry.

Recources and FacilitiesThe Faculty of Chemistry offers excellent possibilitiesboth in research and in teaching. All laboratories andfacilities are under one roof and can be reached wit-hin a matter of minutes, a unique feature and trade-mark of Bielefeld University. The excellent open-access university library contains about 2 millionbooks and provides long and user-friendly hoursextending into nights and weekends as well as com-puter access to important journals and catalogues.Chemistry laboratories and facilities are excellentlyequipped. Comprehensive and modern equipment isavailable for the continually growing tasks in theanalytical field including, amongst others, severalhigh-field NMR spectrometers, mass spectrometersand X-ray diffractometers – all of them meeting thelatest technical specifications.FTIR, Raman, UV-VIS, EPR and smaller NMR spectrometers and a multitude of other apparatus forthe diverse areas of application are available in theindividual work groups. Nearly all the offices areequipped with computers, and information can beobtained quickly and directly from the Internet. Thefaculty, as well as the University Computer Centre,also makes computers available for the students. The faculty avails of its own electronic, mechanicaland glass workshops. This allows on-the-spot repairsas well as a speedy construction of complex individu-al apparatus.

12

Kontakte

Die Fakultät für Chemie bietet für naturwissen-schaftlich interessierte Schülerinnen und Schüler viel-fältige Möglichkeiten zum Erkunden der Chemie,ihrer experimentellen Methoden und ihrerForschungswelt, "vor Ort". Neugierige Besucher-gruppen, aber auch Einzelpersonen sind jederzeitwillkommen, wie auch Lehrerinnen und Lehrer, dieihre Kontakte zur Universität und ihre Kenntnis überzeitgemäße ("moderne") Forschungsrichtungen undArbeitstechniken auffrischen möchten. Wir freuenuns über alle diese Gäste und organisieren gern einindividuelles Besuchsprogramm.Mit zunehmender Resonanz führen wir berufs- bzw.fachorientierende Praktika für einzelne Schülerinnenund Schüler durch. Dies schließt nicht nur imLehrplan der Schulen obligaten Praktika, sondernauch (freiwillige!) Ferienpraktika ein. Diese potentiel-len "Jungchemiker" werden von Doktorandinnenoder Doktoranden verschiedener Forschungs-gruppen – soweit möglich unter Berücksichtigungder bevorzugten Fachrichtung – in deren eigenenLaboratorien betreut und können dort in die realeund vielseitige Welt der Forschung eintauchen.

Dies erlaubt eine konkrete Orientierung über die Arbeitsweisen und die Berufswelt derNaturwissenschaftler und Forscher sowie auch über Technische Berufe (z.B. Chemotechniker,Laboranten) der Chemie.Neben diesen individuellen Angeboten führt dieFakultät in unregelmäßigen Abständen "Schnupper-Studientage", "Tage der Offenen Tür" und bundes-weit organisierte "Tage der Chemie" durch. Fernergibt es die Möglichkeit, an von der Universität zen-tral organisierten Besuchstagen die Fakultät fürChemie zu besichtigen. Für Lehrerinnen und Lehrerwerden, gern auch auf besonderen Wunsch,Fortbildungsveranstaltungen und Besuchstage orga-nisiert. Und schließlich: Für ganze Schulklassen mitihren Lehrerinnen und Lehrern öffnet zum Selbst-Experimentieren das teutolab seine Räume (s.u.).Also: Alle Initiativen werden gerne aufgenommen!Melden Sie sich bitte schriftlich oder telefonisch beieiner der u.a. Adressen – oder benutzen Sie für ersteKontakte einfach eine der Adressen auf der Internet-Seite der Fakultät.

Prof. Dr. Dietmar Kuck ÖffentlichkeitsreferentOrganische Chemie (OC I)Raum F3-126, Tel. 106 -20 60 (Sekr. -69 20)

Sandra Holtmann RA FakultätsverwaltungRaum E3-110, Tel. 106 -6134

Prof. Dr. Rüdiger Blume Chemie und Didaktik der Chemie (DC II)Raum F1-136, Tel. 106 -20 40

Dr. Ekkehard Diemann Anorganische Chemie (AC I)Raum E3-131, Tel. 106 -6152

Dr. Andreas Mix Anorganische Chemie (AC III)Raum E4-129, Tel. 106 -6180

Dr. Herbert Wenzel Biochemie (BC I)Raum F4-133, Tel. 106 -20 91

13

Contacts

The Department of Chemistry offers students inte-rested in the natural sciences a variety of possibilitiesto investigate chemistry, its experimental methodsand its research “where it all happens”. Interestedgroups of visitors, as well as individual persons, arewelcome anytime, as are teachers who wish torenew their contacts to universities and brush up ontheir knowledge of contemporary (“modern”) rese-arch trends and work techniques. We are more thanpleased to see all these guests and would be glad toorganise an individually planned visitors’ programme.Our career-oriented practical training for individualpupils has found increasing resonance. This does notonly include the obligatory practical training in theschools’ curriculum, but also (voluntary!) practicaltraining. These potential “young chemists” aresupervised by post-graduates from the differentresearch groups – as far as possible considering themajor interests – in their own laboratories, and canimmerse themselves in the real and varied world ofresearch.

Prof. Dr. Dietmar Kuck Public contacts officerOrganic Chemistry (OC I)Room F3-126, Tel. 106 -20 60 (Secr. -69 20)

Sandra Holtmann RA Faculty AdministrationRoom E3-110, Tel. 106 -6134

Professor Dr. Rüdiger Blume Chemistry and its Didactics (DC II)Room F1-136, Tel. 106 -20 40

Dr. Ekkehard Diemann Inorganic Chemistry (AC I)Room E3-131, Tel. 106 -6152

Dr. Andreas Mix Inorganic Chemistry (AC III)Room E4-129, Tel. 106 -6180

Dr. Herbert Wenzel Biochemistry (BC I)Room F4-133, Tel. 106 -20 91

This affords an informed insight into the workingtechniques and professional world of natural scien-tists and researchers as well as into that of the tech-nical professions (e.g. chemical technician, labora-tory assistant) in the field of chemistry.In addition to these individual offers, the departmentalso organises – at irregular intervals – “Info-Courses”, “Open Days” and nation-wide“Chemistry Days”. It is also possible to visit theDepartment of Chemistry on the “Open Days”organised by the University. And, last but not least:The teutolab can be visited by teachers with theirclasses (see below).So: All initiatives are welcome. Please get in touchwith us, by writing or by phoning, to one of theaddresses below – or, for a first contact, by simplyusing one of the addresses on the faculty’s Internetsite.

14

teutolab

The laboratory teutolab at the Chemistry Faculty isthe domain of children and young people. It wasfounded in 1999 to attract boys and girls from regio-nal schools to science. Since February 2000, it offersactivities for the age group of 8-12. Typically, schoolclasses from 3rd to 5th grade spend an intense labo-ratory course with 3-4 hours of hands-on activities,accompanied by their teachers who fit this specialchemistry visit into their regular school program. teu-tolab is designed to counteract the declining interestof young adults in science and the increasing ten-dency to actively avoid chemistry in the higher gra-des of school education; in the long run, we hopealso to encourage future generations of students tochoose chemistry as their subject! The approach tostart at an early age may seem unusual, but has asolid foundation in novel science education con-cepts.Visitors and staff enjoy the intense and creativeatmosphere in the teutolab, and the young "scien-

tists" who have performed experiments - dressed upin lab coat and goggles - return home exhausted buthappy. Supervised by the teutolab team consisting ofexperienced teachers and chemistry students, theylearn to see chemistry in everyday life - experimen-tal series are centred e.g. around milk and fruit,paper and ink. The concept focuses on subjects likechemical production, energy, environmental aspectsas well as on naturally occurring chemicals includingflavours and colouring agents. To extend the con-cept, cooperation with 22 regional schools has beenformally established, starting 2003 by the formationof the teutolab network.Building on the success with the present age group,teutolab meanwhile offers activities also for age 13-13, and research-oriented science projects are beingdesigned for age 16-19. Also, the effects of theseactivities were evaluated by an interdisciplinary teamof researchers. The message of teutolab to all:Chemistry is fun!

15

Faculty Profiles

Dirk AndraeRüdiger BlumeThomas BraunAndreas BrockhinkeThomas DierksGabriele Fischer von MollardJürgen FreyAdelheid GodtPeter JutziKatharina Kohse-HöinghausThomas KoopDietmar KuckGisela LückUwe MantheJochen MattayAchim MüllerEberhard NeumannWolfgang SchoellerNorbert SewaldLothar Weber

Professors Emeriti

Hans BrockmannEckehard DehmlowThomas DorfmüllerHans-Friedrich GrützmacherJürgen HinzeWilhelm KnocheHarald TschescheHelmut Wenck

16

PD Dr. Dirk Andrae

Dissertation, University of Stuttgart, 1994Habilitation, University of Bielefeld, 2001

Phone: +49-((0)521) 106-2086E-Mail: [email protected]

Numerical Methods for Electronic Structure CalculationsNumerical, i.e. basis set free, non-relativistic (one-componentHartree-Fock and Kohn-Sham) and relativistic (four-componentDirac-Fock) calculations for atoms, including arbitrary nuclearmodels (e.g. point-like, homogeneous, Gauss or Fermi models)and suitable effective core potentials (ECPs). Development ofmethods for numerical electronic structure calculations onarbitrary molecules. The results thus obtained are also useful asreference data for calculations relying on basis functions.

Pseudopotentials for Atoms and for Molecular FragmentsDevelopment of pseudopotentials for atoms (effective core poten-tials) and for molecular fragments (effective fragment potentials).Application of these in molecular electronic structure calculationsfor systems including (heavy) metal atoms.

Molecular and Electronic Structure of Polyoxometallate Ions Calculation of the molecular and electronic structure of polyoxo-metallate ions of molybdenum and tungsten. Derivation of force-field parameters to represent these ions in MD simulations.

Molecular Knots and Links Development of methods to build up and handle knotted and lin-ked molecular structures (knotted peptides or proteins, plasmidicnucleic acids). Development of a hierarchy of methods to describe the molecular structure, from ab initio quantum chemistry to the theory of elasticity.

Selected Publications

D. Andrae, M. Reiher, J. HinzeA comparative study of finite nucleusmodels for low-lying states of few-electron high-Z atomsChem. Phys. Lett. 2000, 320, 457-468.

D. Andrae Finite nuclear charge density distributi-ons in electronic structure calculationsfor atoms and moleculesPhys. Rep. 2000, 336, 413-525.

D. Andrae, R. Brodbeck, J. HinzeExamination of Several DensityFunctionals in Numerical Kohn-ShamCalculations for AtomsInt. J. Quantum Chem. 2001, 82, 227-241.

D. AndraeNumerical self-consistent field methodfor polyatomic moleculesMol. Phys. 2001, 99, 327-334.

T. C. Scott, M. Aubert-Frécon, G.Hadinger, D. Andrae, J. Grotendorst, J.D. Morgan IIIAsymptotically exact calculation ofexchange energies of one-active elec-tron diatomic ions with the surfaceintegral methodJ. Phys. B: At. Mol. Opt. Phys. 2004,37, 4451-4469.

17

Prof. Dr. Rüdiger Blume

Diplom-Biochemiker, University of Tübingen, 1973Dissertation, University of Tübingen, 1975Habilitation, Pädagogische Hochschule Westfalen-Lippe, 1978University of Bielefeld, 1980

Phone: (0521) 106-2031E-Mail : [email protected]: http://dc2.uni-bielefeld.de

Modern Media in Environmental ChemistryThere is much talk about problems of the environment amongpedagogues and politicians. In everyday classrooom practise, theissue, however, is hardly present. This sad result documented bystudies is mainly due to the fact that there has hitherto been onlya scant supply in simple and at the same time comprehensive teaching materials with reference to environmental instruction forexperimentallly oriented teaching of the natural sciences. To mendthis state of affairs is a task for educators. This is why we are developing a program containing a large number of model experiments for the entire field of environmental chemistryaccessible to experimentation. This program is intended to contri-bute towards establishing a basis for developing teaching units for chemistry, physics and biology, as well as for higher education inenvironmental science. Another modern aspect in chemistry trea-ted by us is the technology of renewable raw materials.

Chemical EducationA good chemical education needs good media as well. For thepresentation of our results we pursue a server www.chemieunter-richt.de which is contacted more than 100.000 times – daily.Naturally, we still are engaged in the development of a lot ofbooks for multimedial school purposes.

Selected Publications

„Erstellung und Erprobung von moder-nen Medien im Verbund“Schalk-Trietchen, R. Blume und M.Behrendt in: A. Kometz (Editor):Chemieunterricht im SpannungsfeldGesellschaft – Chemie – Unterricht.Cornelsen Verlag, Berlin 1998.

School-Books e. g.: „Chemie für Gymnasien Klassen 8,9/10 und 11 (Sachsen-Anhalt)“R. Blume, W. Kunze, H. Obst, E. Rossaund H. Schönemann, Cornelsen Verlag,Berlin 2001.

„Chemie interaktiv“R. Blume and I. Eilks (Editors),Cornelsen Verlag, Berlin 2005.

18

PD Dr. Thomas Braun

Diplom, Chemistry, University of Würzburg, 1993Stay at the University of Rennes, 1995Dissertation, University of Würzburg, 1997Research Fellow, University of York, 1997-2000Habilitation, University of Bielefeld, 2003

Phone: +49 (0521) 106-6163E-Mail: [email protected]

Metal Mediated Synthesis of Fluorinated Molecules by C-F ActivationThe introduction of fluorinated groups into organic molecules cancause a dramatic change in their physical properties, chemicalreactivity and physiological activity. Nevertheless, it is still a chal-lenge for synthetic chemists to prepare the desired compounds.One of our strategies for the synthesis of highly fluorinated aro-matics, olefins or alkanes is initiated by the selective replacementof a fluorine atom by a transition metal. After these C-F activati-on reactions, the fluorinated organic ligands can be derivatised toyield fluoro-organic molecules, which are often not accessible byany other means. The caracterization of the organometallic com-pounds often requires sophisticated NMR spectroscopic techni-ques, such as isotope labeling techniques, simulation of NMRspectra, and multidimensional NMR spectroscopy at low tempera-ture.

Synthesis and Reactivity of Metal Complexes Bearing a FluoroLigandThere is a growing interest in the study of transition metal organo-metallic fluoro complexes, because the unique properties of fluo-rine impart an unusual reactivity to the metal-fluorine bond whichcan be exploited in preparative organometallic chemistry or incatalysis. Our investigations focus on the synthesis and reactivityof new palladium, platinum and rhodium complexes, which defi-nitely hold promise for future applications such as stereoselectivefluorination reactions.

Reactivity and Structure of Peroxo ComplexesTransition metal complexes bearing peroxo ligands play an impor-tant role in various catalytic or stoichiometric transformations. Weare interested in the development of new routes for the oxygena-tion of inorganic and organic substrates. The project involves stu-dies on the synthesis and reactivity of unusual rhodium peroxoand hydroperoxo complexes as well as related compounds with aRhOOSiMe3 unit. These compounds have to be characterized byinfrared spectroscopy using isotope labeling techniques.

Selected Publications

"Conversion of Hexafluoropropeneinto 1,1,1-Trifluoropropane by C-FActivation at Rhodium"T. Braun, D. Noveski, B. Neumann, H.-G. Stammler, Angew. Chem. 2002,15, 2870-2873.

"Routes to Fluorinated OrganicDerivatives by Nickel Mediated C-F Activation of Heteroaromatics"T. Braun, R. N. Perutz, Chem.Commun. 2002, 2749-2757.

"C-F activation and hydrodefluorinati-on of fluorinated alkenes at rhodium",D. Noveski, T. Braun, M. Schulte, B.Neumann, H.-G. Stammler, DaltonTrans. 2003, 4075-4083.

"Synthesis and Reactivity of RhodiumFluoro Complexes", D. Noveski, T.Braun, S. Krückemeier, J. FluorineChem. 2004, 125, 966.

A metal complex obtained after replacement of a

fluorine in hexafluoropropene by rhodium

19

HD Dr. Andreas Brockhinke

Diplom, Physics, University of Bielefeld, 1993Dissertation, Physics, University of Bielefeld, 1996Habilitation, Physical Chemistry, University of Bielefeld, 2003Research visits: Colorado School of Mines (Golden, USA), LundLaser Centre (Lund, Sweden), Oxford Institute for Laser Science(Oxford, UK)Award of the Westfälisch-Lippische Universitätsgesellschaft,1996

Phone: (0521) 106 2189E-mail: [email protected]: http://pc1.uni-bielefeld.de/~andreas

Main TargetIn contrast to many conventional techniques, optical spectroscopyhas the advantages of being non-intrusive, highly sensitive andselective and offers an excellent spatial and temporal resolution.These properties allow a wide field of applications in basic scien-ces, industry, environmental analysis and medicine.

Quantitative Species DetectionWe develop novel techniques such as two-dimensional Excitation-Emission Spectroscopy (EES) and Cavity Ring-down Spectroscopy(CRDS). These methods allow the detection of trace species in thegas phase down to the ppt range and the temperature and areused to analyze chemical reactions at high temperatures - forexample, in combustion.

Collisional ProcessesWhen laser-excited radicals collide with other molecules, theytend to loose part of the initial information: other quantum statesare populated, and emission spectra change significantly. Theseprocesses are investigated with ultra-fast picosecond lasers andnumerical modelling. Results are both of fundamental interest,and a prerequisite for quantitative measurements with the LIFtechnique.

Applications in BiochemistryOptical spectroscopy is a powerful tool to validate structuralmodels and to reveals conformational changes in biologic macro-molecules. Additionally, these techniques are used to study pro-tein-substrate reactions under physiological conditions and todetermine kinetic constants.

Selected Publications

"Energy transfer in the OH A2P state:The role of polarization and of multi-quantum energy transfer"A. Brockhinke, U. Lenhard, A. Bülter, K.Kohse-Höinghaus, Phys. Chem. Chem.Phys. 2004, 7, 874-881.

"Structural changes in the Ras proteinrevealed by fluorescence spectroscopy"A. Brockhinke, R. Plessow, K. Kohse-Höinghaus, Ch. Herrmann, Phys.Chem. Chem. Phys. 2003, 5, 3498-3506.

"Cavity ring-down measurements inflames using a novel single-mode tuna-ble laser system"A. Schocker, K. Bultitude, P. Ewart, A.Brockhinke, Appl. Phys. B 2003, 77,101-108.

"Short-pulse techniques: Picosecondfluorescence, energy transfer and'quench-free' measurements"A. Brockhinke, M. Linne, in: "AppliedCombustion Diagnostics", Taylor andFrancis, New York, 128-154, 2002.

20

Prof. Dr. Thomas Dierks

Diploma, University of Tübingen, 1987Dissertation, Forschungszentrum Jülich/University ofDüsseldorf, 1990Guest Researcher, Università di Bari (Italy), 1991Research Associate, University of Göttingen, 1992-1996Habilitation fellow (DFG), University of Göttingen, 1996-1999Habilitation, University of Göttingen, 2000University of Bielefeld, 2004

Phone: (0521) 106-2092E-mail: [email protected]

Formylglycine - a novel protein modification Sulfatases are a family of enzymes that contain at their active sitea unique amino acid, C·-formylglycine (FGly). FGly directly parti-cipates in catalysis. FGly is post-translationally generated by oxi-dation of cysteine (eukaryotes and prokaryotes) or serine (pro-karyotes). In mammals, this oxidation is carried out by the FGly-generating enzyme (FGE) during translocation of sulfatases intothe endoplasmic reticulum.We recently identified FGE and determined its 3D structure. FGEdefines a new protein family that is conserved in evolution.Structural and functional data suggest that FGE is an unusual oxy-genase utilizing molecular oxygen as terminal electron acceptorwithout requirement of metals or other activating cofactors.In a number of bacterial sulfatases a serine residue is oxidized toFGly by a cytosolic protein termed AtsB. With the help of FeS cen-ters and S-adenosylmethionine, AtsB generates a deoxyadenosylradical, thereby initiating single electron transfer steps associatedwith serine oxidation.

Sulfatases - an extraordinary enzyme familyWe furthermore are characterizing novel human sulfatases.Mouse knock-out models were generated. Sulf1 plays an impor-tant role in embryonic tissue differentiation, homeostasis andother essential cellular processes, which rely on heparan sulfatedependent signal transduction pathways. In addition, a tumorsuppressor function was ascribed to Sulf1.

Selected Publications

"Sequence determinants directing con-version of cysteine to formylglycine ineukaryotic sulfatases" T. Dierks, M. R. Lecca, P.Schlotterhose,B. Schmidt, K. von Figura, EMBO J.1999, 18, 2084-2091.

"Multiple Sulfatase Deficiency is cau-sed by mutations in the gene encodingthe human C·-formylglycine genera-ting enzyme" T. Dierks, B. Schmidt, L.V. Borissenko, J.Peng, A. Preusser, M. Mariappan, K.von Figura, Cell 2003, 113, 435-444.

"Post-translational formylglycine modi-fication by the radical SAM proteinAtsB"Q. Fang, J. Peng, T. Dierks, J. Biol.Chem. 2004, 279, 14570-14578.

"Molecular characterization of thehuman C·-formylglycine generatingenzyme" A. Preusser-Kunze, M. Mariappan, B.Schmidt, S. L. Gande, K. Mutenda, D.Wenzel, K. von Figura, T. Dierks, J.Biol. Chem. 2005, 280, 14900-14910.

"Molecular basis for multiple sulfatasedeficiency and catalytic mechanism forformylglycine generation of the humanformylglycine generating enzyme" T. Dierks, A. Dickmanns, A. Preusser-Kunze, B. Schmidt, M. Mariappan, K.von Figura, R. Ficner, M. G. Rudolph,Cell 2005, 121, 541-552.

Substrate binding groove of the formylglycine-generating enzyme stretching from the site of substrate crosslinking(Pro182) to the redox-active Cys336/Cys341 pair.

21

Prof. Dr. Gabriele Fischer von Mollard

Dissertation, Max Planck Institute for Psychiatry, Munic, 1992Postdoc, University of Oregon, EugeneJunior group leader, University of Göttingen, 1998Habilitation, University of Göttingen, 2002 University of Bochum, 2004University of Bielefeld, 2005

Phone: (0521) 106-2081E-mail: [email protected]

Research InterestsOne of the fundamental questions in cell biology is how proteinsare transported between different organelles. This traffic requirestransport vesicles which bud from the donor and fuse with the tar-get organelle. Our group is interested in the family of SNARE pro-teins which are required for recognition between transport vesicleand target membrane and for their subsequent fusion. DifferentSNARE proteins are found on transport vesicles and target mem-branes and form specific complexes. We focus on SNAREs whichare required in transport between the Golgi, endosome and lyso-some/vacuole. Such endosomal pathways are important for thesupply of the cell, for signal transduction, for immune defense andalso for entry of pathogens. As these proteins are conserved inevolution we can study similar processes in yeast and mammals.

Yeast projectsWe use baker´s yeast as one model system because of powerfulgenetic approaches. Mutant genes can be generated easily anddefects analyzed. Genes required in the same step can be identi-fied by genetic interactions. Using these techniques we demon-strated that:• the SNAREs Vti1p and Ykt6p act in several different transportpathways in the endosomal system• identified a new SNARE Use1p in retrograde transport from theGolgi to the ER• characterized a protein required for vesicle budding, Ent3p, asinteraction partner for Vti1p.

Mouse projectsOur second focus are endosomal SNAREs in mouse, especiallyVti1a and Vti1b. We are studying their subcellular distributionusing immunofluorescence microscopy and are identifying SNAREpartners by co-immunoprecipitation. We used the yeast twohybrid system to identify new binding proteins for SNAREs. Wegenerated SNARE knock out mice and are studying their pheno-type. Cell lines derived from these mice are used to analyze distri-bution of different proteins and endosomal transport.

Selected Publications"Specific interaction between SNAREsand ENTH domains of epsin-related pro-teins in TGN to endosome transport"Chidambaram, S., Müllers, N.,Wiederhold, K., Haucke, V., Fischer vonMollard, G., J. Biol. Chem. 2004, 279,4175-4179.

"Deletion of the SNARE vti1b in miceresults in loss of a single SNARE part-ner, syntaxin 8"Atlashkin, V., Kreykenbohm, V.,Eskelinen, E.L., Wenzel, D.; Fayyazi, A.,Fischer von Mollard, G., Mol. Cell.Biol. 2003, 23, 5198-5207.

"Use1p is a yeast SNARE protein requi-red for retrograde traffic to the ER"Dilcher, M., Veith, B., Chidambaram,S., Hartmann, E., Schmitt, HD., Fischervon Mollard, G., EMBO J. 2003, 22,3664-3674

"The SNAREs vti1a and vti1b havedistinct localization and SNARE com-plex partners"Kreykenbohm, V., Wenzel, D., Antonin,W., Atlachkine, V., Fischer von Mollard,G., Eur. J. Cell Biol. 2002, 81, 273-280.

"Genetic interactions with the yeast Q-SNARE VTI1 reveal novel functions forthe R-SNARE YKT6"Dilcher, M., Köhler, B., Fischer vonMollard, G., J. Biol. Chem. 2001, 276,34537-34544.

22

Selected Publications

“In vitro and in vivo specificity of pro-tein tyrosine kinases for immuno-globulin G receptor (FcÁRII) phos-phorylation”N. Bewarder, V. Weinrich, P. Budde, D. Hartmann, H. Flaswinkel, M. Reth, J. Frey, Mol. Cell. Biol. 1996, 16,4735-4743.

“Characterization and crystallization ofsoluble human FcÁ receptor II (CD32)isoforms produced in insect cells” P. Sondermann, U. Jacob, C. Kutscher,J. Frey, Biochemistry 1999, 38, 8469-8477.

“Elevated expression of membranetype 1 metallo-proteinase (MT1-MMP)in reactive astrocytes following neuro-degeneration in mouse central nervoussystem”S. Rathke-Hartlieb, P. Budde, S. Ewert,U. Schlomann, M.S. Staege, H.Jockusch, J.W. Bartsch, J. Frey, FEBSLett 2000, 481, 227-234.

“Differential modulation of stimulatoryand inhibitory FcÁ receptors on humanmonocytes by TH1 and TH2 cytokines”L. Pricop, P. Redecha, J.-L. Teillaud, J. Frey, W.H. Fridman,C. Sautès-Fridman, J.E. Salmon, J. Immunol.2000, in press.

Prof. Dr. Jürgen Frey

Dissertation, University of Marburg, 1979University of Bielefeld, 1988

(0521) 106-2022E-Mail: [email protected]

Membrane Type Matrix Metalloproteinases (MT-MMPs)MT-MMPs play a significant role for the turnover of the extracel-lular matrix (ECM), a process that is also imbalanced duringtumour cell invasion.Our research is focussed on the role of MT1,2,3-MMP duringwound healing as well as in neurodegenerative disorders. Usingmouse mutants suffering from neurodegeneration we study theexpression of MT-MMPs in affected regions of the brain. We esta-blished transgenic mouse lines which either constitutively or regu-latably express MT-MMPs in a broad tissue range or tissue speci-fic. The contribution of these enzymes in wound healing, smoothmuscle cell growth as well as brain functions are investigated.

Shedding of Receptors and Ligands by ADAMsThe family of ADAM (a disintegrin and metalloprotease) proteinscontains about 30 members expressed in cells from C. elegans,Drosophila, mouse and man. Eight out of twenty four known tobe expressed in mouse and man, are supposed to contain a cata-lytically active metalloprotease domain. One of the functions ofADAMs is shedding (proteolytic release) of surface molecules(receptors, ligands, cytokines etc.). We recently identified thesheddase for the low affinity IgE receptor (CD23) that plays a sig-nificant role in allergic reactions and rheumatoid arthritis. Furtheraims of our work are the analysis of the substrate specificity of thesheddase as well as the development of specific inhibitors.

Characterisation of Calcium Channels in LymphocytesThe long term objective of our research interest is to unravel thedetailed mechanisms of calcium channel activation and deactiva-tion in lymphocytes. To achieve this major goal we focus our rese-arch interest on three subjects: a) molecular cloning of candidatecalcium channel cDNAs b) characterisation of the subunit structu-re and c) the role of associated proteins in gating of the calciumchannel activity.

23

Prof. Dr. Adelheid Godt

Diplom, LMU München, 1988Dissertation, Max Planck Institute for Polymer Research, Mainz,1991Postdoctoral Fellow, Cornell University, Ithaca, N.Y., 1991-1993Habilitation, Max Planck Institute for Polymer Research,Mainz/Free University Berlin, 2001Visiting Professor, International University Bremen, 2003Professor, University of Bielefeld 2003

Phone: (0521) 106-2071E-Mail: [email protected]

Monodisperse oligo(phenyleneethynylene)sas synthetic modules for • rod-coil block copolymers as thermotropic, light emitting mate-rials and as model compounds to study molecular recognition atstructured surfaces in collaboration with Prof.s F. Schmidt and A.Gölzhäuser, University of Bielefeld • hybrid organic/inorganic, ordered nanocomposites in collabora-tion with Prof. M. Lahav, Weizmann Institute in Rehovot, Israel• geometrically well defined spin labelled molecules in collabora-tion with Dr. G. Jeschke, Max Planck Institute for PolymerResearch, Mainz• diradicals to study dynamic nuclear polarisation in collaborationwith Dr. van den Brandt, Paul Scherrer Institute in Villigen,Schweiz.

Ultralarge Cycles• synthetic strategies• building blocks for catenanes

Catenanes• synthesis of [2]catenanes with ultralarge, non interacting rings• study of their dynamics

Selected Publications

"A Facile Access to MonodisperseUltralarge Rings"M. R. Shah, S. Duda, B. Müller, A.Godt, A. Malik, J. Am. Chem. Soc.2003, 125, 5408-5414.

"Non-Rusty [2]Catenanes with HugeRings and Their Polymers"A. Godt, Eur. J. Org. Chem. 2004,1639-1654.

"EPR Probes With Well Defined, LongDistances between Two or ThreeUnpaired Electrons"A. Godt, C. Franzen, S. Veit, V.Enkelmann, M. Pannier, G. Jeschke, J.Org. Chem. 2000, 65, 7575-7582.

"Co-Conformational Distribution ofNanosized [2]Catenanes Determinedby Pulse EPR Measurements"G. Jeschke, A. Godt, ChemPhysChem2003, 4, 1328-1334.

24

Selected Publications

[1] "Strategies in the CyclopentadienylChemistry of p-Block Elements"P. Jutzi, Pure and Appl. Chem. 2003,75, 483-494.

[2] "The C5Me5Si+ Cation: A StableDerivative of SiH+"P. Jutzi, A. Mix, B. Rummel, W. W.Schoeller, B. Neumann and H.-G.Stammler, Science 2004, 305, 849-851.

[3] "Cp* Chemistry of main-group ele-ments"P. Jutzi, G. Reumann, J. Chem. Soc.,Dalton Trans. 2000, 14, 2237.

[4] "New magnetic particles for bio-technology"A. Hütten, D. Sudfeld, I. Ennen, G.Reiss, W. Hachmann, U. Heinzmann, K.Wojczykowski, P. Jutzi, W. Saikaly, G.Thomas, J. Biotec. 2004, 112, 47.

[5] "[{Fe(C5H4)2}3{Ga(C5H5N)}2] – eindreikerniges galliumverbrücktes Ferro-cenophan mit Karussellstruktur"P. Jutzi, N. Lenze, B. Neumann, H.-G.Stammler, Angew. Chem. 2001 113,1470-1473; Angew. Chem. Int. Ed.Engl. 2001, 40, 1424-1427.

Prof. Dr. Peter Jutzi

Dissertation, University of Marburg, 1965Habilitation, University of Würzburg, 1971University of Bielefeld, 1979

Wacker-Silicon-Preis, 1987Max-Planck-Forschungspreis, 1992Stanley Kipping Award, 2000Alfred Stock Gedächtnispreis, 2002

Phone: (0521) 106-6181E-Mail: [email protected]

Cyclopentadienyl Chemistry of Main Group Elements Synthetic strategies in the cyclopentadienyl (Cp) chemistry ofmain group elements are based on the following phenomena [1]:• ionic or covalent C(Cp) bonding• low barriers for haptotropic and dyotropic shifts, for sigmatropicrearrangements, and for other types of Cp migration• stabilization of elements in their low oxidation state by -com-plexation• tuning of steric and electronic effects by suitable ring substitu-ents• easy homolytic or heterolytic cleavage of El-C(Cp) bondsActually, the chemistry of Me5C5Si+ [2] and of Me5C5Ga [3] is stu-died in more detail.

Synthesis and Funktionalization of Metallic NanoparticlesMetallic Nanoparticles can be formed by decomposition oforganometallic precursors in the liquid phase. The particles are sta-bilized by covering them with amphiphilic molecules (ligands). Weare interested in the processes involved during precursor decom-position, particle growth, and ligand attachment. The synthesisand evaluation of new precursors and ligands is another field ofour interest.Actually, we investigate magnetic FeCo and Co particles and theirstabilization with multidentate ligands [4].

Dynamic Covalent Chemistry as a Tool for Novel OrganogalliumCompoundsThe synthesis of molecular compounds is controlled either ther-modynamically or kinetically. The thermodynamic control is basedon affecting reversible reactions which are dynamic systems. Weuse the concept of "dynamic covalent chemistry" to synthesizetriorganogallium compounds with novel structural features [5].

.

[Me5C5Si]+[B(C6F5)4]-

25

Prof. Dr. Katharina Kohse-HöinghausDiplom, Chemistry, University of Bochum, 1975Dissertation, University of Bochum, 1978Habilitation, University of Stuttgart, 1992Work at DLR, Stuttgart, ONERA, Paris, Stanford University, SRIInternational, USAHeisenberg Fellow (DFG), 1993-1994University of Bielefeld, since 1994Baetjer Lectures in Engineering, Princeton, 1993PUSH awards (Stifterverband), 2000 and 2002Board of Directors (International Combustion Institute), since 2002Board of Trustees (Volkswagenstiftung), since 2002

Phone: (0521) 106 2052/68 87E-Mail: [email protected]

Laser Techniques Modern analytical methods increasingly use lasers because of theirpotential for non-invasive measurements. In reacting media, inclu-ding combustion and chemical vapor deposition, we determinethe concentrations of main compounds and trace gases usingshort-pulse lasers. Also, we investigate structural changes in bio-chemical and biological systems using picosecond laser-inducedfluorescence. We participate in the development of novel quanti-tative measurement techniques.

Energy TransferWhen laser-excited molecules interact with their surroundings,new features may appear in their characteristic spectra due toenergy transfer between different quantum states. We investiga-te these processes for small molecules to understand the underly-ing mechanism. Also, we employ energy transfer strategies bet-ween fluorescent sections in biomolecules to study biomolecularinteractions.

CombustionCombustion research today aims at the understanding and pre-diction of pollutant formation from practical systems. We investi-gate different combustion situations with respect to the generati-on of polyaromatic hydrocarbons and soot and study the interac-tion of flame chemistry and turbulence. Reaction mechanisms areanalyzed in conjunction with these experiments.

Materials for Catalysis, Coatings and Information TechnologyA variety of materials with interesting properties may be obtainedusing chemical vapor deposition techniques. We study the gasphase of such processes to find correlations between chemicalcomposition and material properties with the aim of process opti-mization.

Chemical EducationWith a novel chemical laboratory for children, we attempt to sti-mulate long-term interest in science.

Selected Publications

"Combustion at the focus: laser dia-gnostics and control"K. Kohse-Höinghaus, R. S. Barlow, M.Aldén, J. Wolfrum, Proc. Combust.Inst. 2005, 30, 89-123.

"Applied Combustion Diagnostics"K. Kohse-Höinghaus, J. B. Jeffries(Eds.), Taylor and Francis, New York,2002.

"CVD with Tri-nbutylphosphineSilver(I) Complexes: MassSpectrometric Investigations andDepositions"T. Haase, K. Kohse-Höinghaus, N.Bahlawane, P. Djiele, A. Jakob, H. Lang,Chem. Vap. Deposition 2005, 11, 195-205.

Laser probing of biomolecules

26

Prof. Dr. Thomas Koop

Dissertation, Max Planck Institute for Chemistry Mainz, 1996Postdoc, Massachusetts Institute of Technology, 1997-1998Habilitation, ETH Zurich, 2004University of Bielefeld, 2004

Otto Hahn Medal, 1997Latsis Prize ETH Zurich, 2003Elected Member of `Die Junge Akademie’, 2003

Phone: (0521) 106-6135E-Mail: [email protected]

Water and aqueous solutionsWater is without doubt the most important liquid on Earth. Inmany environmental systems liquid water is found in a super-cooled metastable state below its equilibrium melting temperatu-re. However, the unique properties of water and aqueous solutions in the supercooled state are not fully understood. In par-ticular, the conditions and mechanisms of the liquid-to-solid phasetransition of supercooled water and aqueous solutions to ice haveremained unresolved. We investigate, both experimentally andtheoretically, homogeneous and heterogeneous ice nucleationprocesses in superooled water and aqueous solutions with appli-cations to atmospheric processes and cryobiological systems. Inaddition, we study the thermodynamic properties of aqueoussolutions containing ions, organic solutes, or polymers.

Aerosols and CloudsAerosols and clouds affect atmospheric chemistry and the Earth'sclimate. We are particularly interested in the formation mecha-nisms of polar stratospheric clouds, and the conditions that lead toice particle formation in atmospheric cirrus clouds.

Experimental MethodsWe employ various experimental techniques in our research:• Differential Scanning Calorimetry• Optical Cryo-Microscopy• Emulsions and droplet arrays• Raman Microscopy

Selected Publications

"Homogeneous Ice Nucleation inWater and Aqueous Solutions (ReviewArticle)”T. Koop, Z. Phys. Chem. 2004, 218,1231–1258.

"Water activity as the determinant forhomogeneous ice nucleation inaqueous solutions"T. Koop, B.P. Luo, A. Tsias, T. Peter,Nature 2000, 406, 611-614.

"A New Optical Technique to StudyAerosol Phase Transitions"T. Koop, H.P. Ng, L.T. Molina, M.J.Molina, J. Phys. Chem. A 1998, 102,8924-8931.

"Melting of H2SO4 • 4H2O ParticlesUpon Cooling: Implications for PolarStratospheric Clouds"T. Koop, K.S. Carslaw, Science, 1996,272, 1638-1641.

Ice nucleation in micro-meter sized aqueousdroplets and DSC traceof the freezing andmelting of a water/oilemulsion

27

Selected Publications

Benzoannelated cis,cis,cis,trans-[5.5.5.6]Fenestranes. Syntheses, BaseLability and Flattened MolecularStructure of Strained Epimers of the all-cis SeriesB. Bredenkötter, U. Flörke, D. Kuck,Chem. Eur. J. 2001, 7, 3387-3400.

Half a Century of Scrambling inOrganic Ions: Complete, Incomplete,Progressive and Composite AtomInterchangeD. Kuck, Int. J. Mass Spectrom. 2002,213, 101-144.

The Gas-phase Basicity and ProtonAffinity of 1,3,5-Cycloheptatriene -Energetics, Structure and Inter-conversion of Dihydrotropylium IonsJ.-Y. Salpin, M. Mormann, J. Tortajada,M. T. Nguyen, D. Kuck, Eur. J. MassSpectrom., 2003, 9, 361-376.

2,3,6,7,10,11-Hexamethoxytribenzo-triquinacene: Synthesis, Solid-stateStructure and Functionalization of aRigid Analogue of CyclotriveratryleneM. Harig, B. Neumann, H.-G.Stammler, D. Kuck, Eur. J. Org. Chem.2004, 2381-2397.

Methoxy-substituted CentrohexaindanesThrough the Fenestrane RouteJ. Tellenbröker, D. Barth, B. Neumann,H.-G. Stammler and D. Kuck,Org. Biomol. Chem. 2005, 3, 570-571.

Prof. Dr. Dietmar Kuck

Studies of Chemistry, University of Hamburg, 1968-1972(Diploma)Promotion (Dr. rer. nat.), Bielefeld, 1976Postdoc research, University of Amsterdam, 1983Habilitation, University of Paderborn, 1995Umhabilitation, University of Bielefeld, 2000apl. Professor, University of Bielefeld, 2002

Mattauch-Herzog-Förderpreis für Massenspektrometrie, 1988

Phone: (0521) 106-2060E-mail: [email protected]

Main fields of research• Synthesis of non-natural polycyclic carbon frameworks• Gas-phase ion chemistry and mass spectrometry

Unusual Molecular ArchitectureWe use both established and "modern" methods of organic syn-thesis to construct novel compounds consisting of unusual mole-cular frameworks. We have developed a complete family of high-ly condensed aromatic hydrocarbons (the "centrohexaindanes"),which comprise the first topologically nonplanar K5-hydrocarbon("centrohexaindane"), in which six independent cyclopentanerings contain one common carbon atom.

Benzoannelated Fenestranes, triquinacenes and propellanesOwing to their reactive bridgehead positions and aromatic peri-phery, the centropolyindanes bear a high potential to explore thefascinating field of highly unusual non-natural host-guest anddendrimer chemistry.

Graphite cuttings and other supermolecular framework basedon tribenzotriquinacenesWe have designed challenging possibilities and are undertakingefforts to synthesize extended covalently bound carbon frame-works consisting of bowl-shaped graphite cuttings, polyfunctio-nalized super-cubes and super-tetrahedra.

Chemistry of Organic Ions in the Gas Phase and MassSpectrometryThe chemistry of organic ions lacking the presence of solventmolecules and counter-ions can be favourably studied in the vacu-um of a mass spectrometer. We are studying the unimolecular andbimolecular ("elementary") processes and intrinsic properties ofisolated organic ions and ion/molecule complexes. Insights obtai-ned from these studies are of major importance for understandinggeneral organic chemistry, including the wide-spread analyticalapplication of mass spectrometry.

28

Prof. Dr. Gisela Lück

Dissertation: Universität zu Köln, 1985 (Dr. phil)Henkel KGaA 1986 - 1995Habilitation, Universität zu Kiel, 1999 Professor Universität Essen (2000), Universität Bielefeld 2002 Preise: Friedrich Gmelin-Preis der GDCh, 1999

Tel. : 0521/1062041E-Mail: [email protected]

Frühzeitige Vermittlung naturwissenschaftlicher Inhalte imElementarbereich und Primarstufe

• Entwicklung geeigneter Experimente• Evaluierung der Experimente und deren Deutung in Bezug auf

Erinnerungsfähigkeit und Langzeitwirkung• Untersuchungen zum bereichsspezifischen, intuitiven chemi-

schen Wissen von Kleinkindern• Untersuchungen zur Naturwissenschaftsvermittlung bei behin-

derten Kindern

Außerschulische Medien• Analyse von naturwissenschaftlichen Fernsehsendungen für

Kinder nd Erwachsene• Sach- und Kinderbuchanalyse• Entwicklung chemischer Exponate in Science Centern

Sprachphilosophie und NaturwissenschaftsvermittlungUntersuchungen zur Verwendung von Animismen und Analogienim ChemieunterrichtUntersuchungen zur Rolle der Sprache auf Fehlvorstellungen imnaturwissenschaftlichen Vermittlungsprozess

Selected Publications

LÜCK, GISELA: Handbuch der natur-wissenschaftlichen Bildung. Theorieund Praxis für die Arbeit inKindertageseinrichtungen. Herder,Freiburg, 2003.

LÜCK, GISELA: Leichte Experimente fürEltern und Kinder. Herder-Spektrum,Freiburg, 2000.

LÜCK, GISELA: Naturwissenschaftenim frühen Kindesalter. Untersuchungenzur Primärbegegnung von Vorschul-kindern mit Phänomenen der unbeleb-ten Natur. In: Naturwissenschaften undTechnik – Didaktik im Gespräch. Bd.33. Münster, LIT, 2000.

FÖRSTER, HENDRIK; LÜCK, GISELA:Chemie zum Anfassen. Chemie-exponate in Science Centern. In:Grundschule 2003, 35, 32-38.

LÜCK, GISELA: Naturwissenschaften imfrühen Kindesalter. In: Frühpädagogikinternational. Bildungsqualität imBlickpunkt. Hrsg. von W.E. Fthenakis; P.Oberhuemer. Opladen: Leske +Budrich. 2004, S.331-343.

RISCH, BJÖRN; LÜCK, GISELA: Lehr-plananalyse des naturwissenschaftlichenAnfangsunterrichts der Primarstufe. In:Grundschule 2004, 10, S.63-66

LÜCK, GISELA: Von einsamen Elektro-nenpaaren - Oder: Warum es auch inder Chemie ,menschelt', In: Wenn derGeist die Materie küsst. Verlag HarriDeutsch, Frankfurt, 2004, S.163-175.

29

Prof. Dr. Uwe Manthe

Dissertation, Universität Heidelberg, Theoretische Chemie, 1991 Postdoctoral Fellow, UC Berkeley, 1992/3 Habilitation, Universität Freiburg, Fakultät für Physik, 1997 Heisenberg-Stipendiat, TU München, Theoretische Chemie,1999-2003 Professor für Theoretische Chemie, Universität Bielefeld, 2004

Phone: (0521) 106-2076E-Mail : [email protected]

Research Interests

Quantum Dynamics of Chemical Reactions:thermal rate constants and reaction probabilities for gas phasereactions and reactions on surfaces.

Molecular Spectroscopy and Photochemistry: femtochemistry, vibronic coupling and nonadiabatic dynamics,photodissoziation, isomerization, photoinduced reactions

Proton transfer

Numerical methods for Quantum Molecular Dynamics:• accurate multi-dimensional wave packet dynamics: the multi-configurational time-dependent Hartree (MCTDH) approach,• approximate methods for large systems: mixed quantum classi-cal dynamics and reduced density matrix approaches.

Multi-dimensional potential energy surfaces: Ab initio calculations (quantum chemistry) and interpolationapproaches

Selected Publications

"First principles Theory for theH+CH4 H2+CH3 Reaction"T. Wu, H.-J. Werner, and U. Manthe,Science 2004, 306, 2227.

"The ground state tunneling splittingof malonaldehyde: accurate full dimen-sional quantum dynamics calculations"Mauricio D. Coutinho-Neto, AlexandraViel, and Uwe Manthe, J. Chem. Phys.2004, 121, 9207.

"The Sudden-Polarization Effect and itsRole in the Ultrafast Photochemistry ofEthene"A. Viel, R. P. Krawczyk, U. Manthe,and W. Domcke, Angew. Chem. Int.Ed. 2003, 42, 3434.

"Reaction Rates: Accurate quantumdynamical calculations for polyatomicsystems"U. Manthe, J. Theor. Comp.Chem.2002, 1, 153.

30

Selected Publications

"Preparation of photocyclizable dian-thracene derivatives of resorc[4]areneswhich are potential photo switches "C. Schäfer, J. Mattay, Photochem.Photobiol. Sci. 2004, 3, 331-333.

"Supramolecular Chemistry at theSingle Molecular Level"R. Eckel, R. Ros, B. Decker, J. Mattay,D. Anselmetti, Angew. Chem. Int. Ed.Engl. 2005, 44, 484-488.

"Green Photochemistry: Solar pho-tooxygenations with medium concen-trated sunlight"Michael Oelgemöller, Christian Jung,Jürgen Ortner, Jochen Mattay, ElmarZimmermann, Green Chemistry 2005,7, 35-38.

"Radical Cations of Phenyl-SubstitutedAziridines: What are the Conditions forRing-Opening?"Carsten Gaebert, Jochen Mattay,Marion Toubartz, Steeen Steenken,Beat Müller, Thomas Bally, Chem. Eur.J. 2005, 11, 1294-1304

"Self-Assembly of Resorcinarene-Stabilized Gold Nanoparticles:Influence of the MacrocyclicHeadgroup"Beomseok Kim, R. Balasubramaniam,Waleska Perez-Segarra, Alexander Wei,Björn Decker, and Jochen Mattay,Supramolecular Chemistry 2005, 17,173-180.

Prof. Dr. Jochen Mattay

Dissertation, University (TH) of Aachen (1978)Postdoctoral Fellow, Columbia University, N.Y. (1979/80)Habilitation, University (TH) of Aachen (1984)Professor, Universities of Aachen (1985), Münster (1989),Kiel (1995), Bielefeld (1998)Visiting Professor, Osaka University (Yamada Foundation 1995), University of Berne (3ième cycle 1996)

Phone: (0521) 106-2072E-Mail: [email protected]

Supramolecular ChemistrySynthesis of functionalized (chiral) calix- and resorcarenesOctahydroxypyridine[4]arenes, a new type of calixareneHost-guest complex formation, especially chiral discriminationeffectsSelf assembly of resorcarenes, molecular capsules, gel formationSelf assembled monolayers, LB filmsPhotoswitchable molecular receptor moleculesSupramolecular Chemistry in the gas phaseSingle molecule studies (AFM)CD spectroscopy

PhotochemistryEnergy transfer, electron transfer Radical cation cycloadditionsRadical ion fragmentation and cyclisation reactionsPhotocatalysisSolar photochemistry (Green Chemistry)

Organic and Stereoselective SynthesisMacrocyclesBuilding blocks for Organic SynthesisPolycyclic compounds1,4-NaphthoquinonesFunctionalized fullerenes and fulleroids

31

Prof. Dr. Dr. h. c. mult. Achim Müller

Dissertation, University of Göttingen, 1965 Habilitation, University of Göttingen, 1967University of Dortmund, 1971University of Bielefeld, 1977

Numerous national and international awards and prizes, seehomepage http://www.uni-bielefeld.de/chemie/ac1/

Phone: (0521) 106-6153E-Mail: [email protected]

Unprecedented Chemistry under Confined ConditionsStructurally well defined metal-oxide based spherical porousnanocapsules/artificial cells allow unprecedented chemistry underconfined conditions, e.g., encapsulation chemistry including rela-ted capsule-environment interactions. This includes studies ofencapsulated nanomaterials (e.g. water with and without electro-lytes), as well as of ion uptake-and-release equilibria through thepores and channels of the artificial membranes. In this respectsome of Nature’s pathways can be modelled, like cell response tostimuli as pore closing influences significantly encapsulates’ struc-tures. An interesting corresponding subject is coordination chemi-stry in capsules, allowing a new type of spectroscopic and magne-tic studies while the capsules themselves can separate/positioncations like a nano-ionchromatograph. A special aspect refers tothe possibility of getting more information about confined waterstructures.

Important related points are: (1) the size of the capsules and theirpores can be tuned, while the latter can be opened and closed, (2)the internal cavity shell functionality can be tuned from hydrophi-lic to hydrophobic, and (3) the twenty(!) abundant pores havecrown-ether functions allowing sphere-surface as well as super-supramolecular chemistry including in principle the study of allo-steric effects.

This area shows revolutionary routes to different disciplines, suchas materials science in several directions, physics (regarding confi-ned matter properties), and even mathematics (concerning thetiling problem of sphere surfaces).

This new type of chemistry is, besides several of our other rese-arch projects – from Bioinorganic Chemistry to Natural Philosophy– presently the most attractive research topic; see homepagehttp://www.uni-bielefeld.de/chemie/ac1/

Selected Publications

"Molecular growth from a Mo176 to aMo248 cluster"A. Müller, Syed Q. N. Shah, H. Bögge,M. Schmidtmann, Nature 1999, 397,48-50.

“Self-assembly in aqueous solution ofwheel-shaped Mo154 oxide clusters intovesicles” T. Liu, E. Diemann, H. Li, A. W. M.Dress, A. Müller, Nature 2003, 426,59-62.

“Changeable Pore Sizes AllowingEffective and Specific Recognition by aMolybdenum-Oxide-Based “Nano-sponge”: En Route to Sphere-Surfaceand Nanoporous-Cluster Chemistry”A. Müller, E. Krickemeyer, H. Bögge,M. Schmidtmann, S. Roy, A. Berkle,Angew. Chem. Int. Ed. 2002, 41, 3604-3609.

“Trapping Cations in Specific Positionsin Tuneable “Artificial Cell” Channels:New Nanochemistry Perspectives”A. Müller, S. K. Das, S. Talismanov, S.Roy, E. Beckmann, H. Bögge, M.Schmidtmann, A. Merca, A. Berkle, L.Allouche, Y. Zhou, L. Zhang, Angew.Chem. Int. Ed. 2003, 42, 5039-5044.

“Artificial Cells: Temperature-Dependent, Reversible Li+-IonUptake/Release Equilibrium at MetalOxide Nanocontainer Pores”A. Müller, D. Rehder, E. T.K. Haupt, A.Merca, H. Bögge, M. Schmidtmann, G.Heinze-Brückner, Angew. Chem. Int.Ed. 2004, 43, 4466-4470.

32

Prof. Dr. Prof. h.c. Eberhard Neumann

Dissertation, University of Münster, 1967Habilitation, University of Konstanz, 1973Max-Planck-Institute of Biochemistry, Martinsried, 1975University of Bielefeld, 1983

Academy Price of Chemistry, Göttingen, 1980President, The Bioelectrochemical Society, 1992-1996Saxonian Academy, Leipzig, 1998Präsident, Deutsche Ges. f. Biophysik, seit 2003

Phone: (0521) 106-2053E-Mail: [email protected]

Biological Electricity: Electric Field Effects of Macromolecules and MembranesThe membranes of biological cells are the carriers of vital electri-cal voltages: typically 100 mV, equivalent to a field strength of100 kV/cm at an average membrane thickness of 10 nm.Breakdown of the membrane voltage finally causes cell death.

We address the molecular mechanisms by which the electric fieldscontrol structures and functions, for instance: gated ion transportunderlying nerve and muscle function, specifically the neurotrans-mission system of the acetylcholine receptor, reconstituted in lipidbilayers, further on, ion transport caused by adsorbed annexin V;DNA and oligonucleotide transport.

New electro-optical and conductometric methods and instrumentshave been developed to investigate the very rapid (submicrose-cond) electrical-chemical processes in biological cell membranes,cell pellets (as tissue models) and model membranes like lipidvesicles and planar lipid bilayers.

It has been found that lipid membrane systems in electric fields areglobally deformed and locally electroporated such that the transi-ent aqueous electropores conduct not only small ions but also lar-ger ionic molecules (Dr. S. Kakorin).

Membrane Electroporation in Cell Biology and MedicineA very successful application of high voltage pulses is the reversi-ble electropermeabilization of the lipid part of cell membranes. Incell biology and genetic engineering this new technique is used totransfer naked gene DNA into cells (electrotransfection). The method is applied to electroporate skin tissue to directly trans-fer therapeutical effector substances (Dr. U. Pliquett).Recently, electroporation is used in medicine to efficiently introdu-ce drugs and genes into tissue, particularly into tumors, nowapplied in the various phases of clinical trials (EU-ProjectCliniporator).

Selected Publications

Neumann, E., Electric and magneticfield reception. In: Encyclopedia ofMolecular Cell Biology and MolecularMedicine, ed. R.A. Meyers, WILEY-VCH,New York (2004), Vol. 4, pp. 1-20.

Kakorin, S., Liese, T. and Neumann, E.,Membrane curvature and high-fieldelectroporation of lipid bilayer vesicles,J. Phys. Chem. B. 107, 10243-10251(2003).

Griese, T., Kakorin, S. and Neumann,E., Conductometric and electroopticrelaxation spectrometry of lipid vesicleelectroporation at high fields; Phys.Chem. Chem. Phys. 4,1217-1227 (2002).

Neumann, E., Kakorin, S., Electro-pora-tion of curved lipid membranes in ionicstrength gradients, Biophys. Chem. 85,249 - 271 (2000).

Renkes, R., Schäfer, H.J., Siemens,P.M., Neumann, E., Fatty acid-oligo(ethylene glycol) ester forms ionchannels in lipid membranes, Angew.Chem. Int. Ed. 39, 2512-2516 (2000).

Neumann, E., Digression on chemicalelectromagnetic field effects in mem-brane signal transduction – the experi-mental paradigm of the acetylcholinereceptor, Bioelectrochemistry 52, 43-49 (2000).

Single cells (left) of the microorganism Dictyosteliumdiscoideum, electrofused to viable, still chemotactically activelarge cells (right).

33

Prof. Dr. Wolfgang Schoeller

Dissertation, University of Stuttgart, 1969Postdoctoral Fellow, University of Austin 1969-71University (TH) of Bochum, 1971-77Habilitation, University of Bielefeld, 1978

Phone: (0521) 106-2078E-Mail : [email protected]

Molecular Modelling in Organic and Inorganic Chemistry

Low-Coordinated Phosphorus ChemistryThe quantum chemical modelling of the properties of low-coordi-nated phosphorus compounds is of particular interest with respectto the development of new chemical structures which are of interest for the design of new catalytic systems. With the aid ofmodern computer technology new facettes of this class of com-pounds are predicted. The findings are further explored experi-mentally in collaboration with various European experimentallaboratories.

Silicon-Oxygen FrameworksSilicon-oxygen bonding is the basis for the formation of stones innature. Its further elucidation is fundamental for the evaluation ofbricks of chemical interest, such as transistors, polymeric materialsetc. We model with the quantum chemical machinery the bondingfeatures of such compounds, in order to enable a better under-standing of the bonding properties and also for the laboratorydesign of new compounds in this field.

Transition-Metal ComplexesTransition metals in low and high oxidation states have proven asuseful components for the design of various compounds whichcan function as catalysts. Of particular interest are transitionmetals in high oxidation states, coordinated to electronegativeelements, such as nitrogen. These compounds are promising can-didates for further design of chemical components for catalysisand promise to open a deeper understanding of the basis princi-ple of nitrogen fixation in nature. A quantum chemical modellingof these structures help to understand the details which constitu-te bonding in these compounds.

Selected Publications

“Phosphorane-Iminato Complexes ofTransition Metals with HeterocubaneStructure: A Computational Study”A. Sundermann, W.W. Schoeller, J. Am.Chem. Soc. 2000, 122, 4729-4734.

“Ring Structure Formation inTransition-Metal Nitrido Chlorides byDonor-Acceptor Formation”W.W. Schoeller, A. Sundermann, Inorg.Chem. 1998, 37, 3034-3039.

“Isolation of a Benzene Valence Isomerwith One-Eletron Phosphorus-Phos-phorus Bond”Y. Canac, D. Bourissou, A. Baceiredo,H. Gornitzka, W.W. Schoeller, G. Bert-rand, Science 1998, 279, 80-82.

“A Cyclic Carbanionic Valence Isomerof a Carbocation: Diphosphino Analogsof Daminocarbocations”T. Kato, H. Gornitzka, A. Baceiredo,W.W. Schoeller, G. Bertrand, Science2000, 289, 754-756.

W.W. Schoeller, in Multiple Bonds andLow-Coordination in PhosphorusChemistry, M. Regitz and O.J. Scherer(Eds.), Thieme Verlag, 1990.

34

Prof. Dr. Norbert Sewald

Dissertation, Technical University of Munich, 1991Postdoctoral Fellow, University of Oxford, 1991/92Habilitation, University of Leipzig, 1998University of Bielefeld, 1999

Phone: (0521) 106-2051E-Mail: [email protected]: http://www.uni-bielefeld.de/chemie/oc3neu/

Main Targets:Organic chemistry on the borderline to biology and medical scien-ces: • Chiral reagents and catalysts• Isolation and total synthesis of natural products• Molecular tools for life science research• Peptide-protein interactions, peptide-DNA interactions• Conformational analysis using NMR and MD

Biologically Active PeptidesPeptides and proteins are naturally occurring biomolecules, com-posed of amino acids. In many cases the interaction between pro-teins, which is crucial for physiological events, can be influencedby peptides with a well-defined three-dimensional structure. Thecombination of NMR spectroscopy and molecular dynamics simu-lations provides a powerful tool for the elucidation of the solutionstructure of peptides and, hence, for the investigation of peptide-protein interactions. This methodology is complemented by bind-ing studies with surface plasmon resonance enabling real-timemonitoring of biomolecular binding events. Certain peptides mayalso be used for the selective delivery of toxic substances totumour cells in order to reduce side effects in tumour therapy.

Molecular Tools for Life Science ResearchThe post-genome era will increasingly focus on proteins as themain effector molecules in biological systems. The analysis of theproteome, the entirety of all proteins expressed by a cell undercertain conditions, is a new and very challenging task. Tailor-madechemical probes, obtained by synthesis, significantly contribute tothe advanced methods of proteome analysis.

Selected Publications

"Are ‚-Amino Acids Á-Turn Mimetics?– Exploring A New Design Principle forBioactive Cyclopeptides" F. Schumann, A. Müller, M. Koksch, G.Müller, N. Sewald, J. Am. Chem. Soc.2000, 122, 12009.

"Peptides - Chemistry and Biology"N. Sewald, H.-D. Jakubke, Wiley-VCH,Weinheim 2002.

"The First Total Synthesis of Efrapeptin C"M. Jost, J.-C. Greie, N. Stemmer, S. D.Wilking, K. Altendorf, N. Sewald,Angew. Chem. 2002, 114, 4438;Angew. Chem. Int. Ed. Engl. 2002, 41,4267.

"Mechanism-Based Tagging of ProteinFamilies - A New Concept in FunctionalProteomics"M. C. Hagenstein, J. H. Mussgnug, K.Lotte, R. Plessow, A. Brockhinke, O.Kruse, N. Sewald, Angew. Chem. 2003,115, 5793; Angew. Chem. Int. Ed.Engl. 2003, 42, 5635.

35

Prof. Dr. Lothar Weber

Dissertation, University of Marburg, 1973Postdoctoral Fellow, University of Wisconsin, 1974-1975Habilitation, University/GH of Essen, 1981University of Bielefeld, 1988

Phone: (0521) 106-6169E-Mail: [email protected]

Multiple bond systems of heavier elementsSince three decades compounds with P=C, As=C, P=P and As=Asdouble bonds have been intensively studied. We have investiga-ted phospha- and arsa-alkenes with an inverse electron distribu-tion about the double bond. This situation is encountered in mole-cules with with one or two amino groups at the carbon atom ofthe double bond. Such compounds serve as convenient sources ofcarbenes and phosphinidenes which are cleanly transferred toelectrophiles under very mild conditions.

Boron-Nitrogen ChemistryIn the recent years we were interested in the chemistry of boron-functionalized 1,3,2-diazaboroles. Besides a rich chemistry whichoccured at the boron centre, reaction with ketenes led to oxaza-borolidines. Moreover 1,3,2-diazaboroles can be convenientlyattached to oligothiophenes to afford highly luminescent com-pounds which may be useful for organic light emitting diodes.Moreover, thermolysis of 1,3,2-diazaboroles in the gas phase ledto the extrusion of a diazabutadiene with concomitant formationof borylenes BR. Condensation of the latter species led to phasesof interesting structures and properties.

Novel CatalystsThe continuing demand for polymeric materials with well-definedproperties is a motivation for the search for novel polymerizationcatalysts. We observed that superelectrophilic metal carbonyl cat-ions catalyze the polymerization of olefins with unusally high turn-over numbers. Addition of a few crystals of the catalyst effectedspontanous polymerization of the substrate. Hydroxy-functionali-zed alkynes, e.g. propynols, tetramerize forming dioxanes, where-as arylacetylenes were stereospecifically converted into polymerswith trans-transoid microstructures.

Selected Publications

“Recent developments in the chemi-stry of metallo phosphaalkenes”L. Weber, Coord. Chem. Rev. 2005,249, 741.

“Synthesis and Structure of the First‹3-1,2-Diphosphaallyl Complexes [(‹5-C5H5)(CO)2M{‹3-RPPC(SiMe3)2}] (M=Mo, R= tBu, Cy; M= W, R= tBu) from[‹5-C5H5)(CO)2M=P=C(SiMe3)2] (M=Mo, W) and inversely polarizedPhosphaalkenes RP=C(NMe2)2 (R= tBu,Cy)”L. Weber, G. Noveski, U. Lassahn, H.-G. Stammler, B. Neumann, Eur. J.Inorg. Chem. 2005, 1940.

“Synthesis and Structure of theDecanuclear Gold(I) Cluster Cation[Au8(AuCl)2{Ì3-P(tBu)}2{Ì2-P(tBu)=C(NMe2)2}6]

4+ with BridgingPhosphaalkene and PhosphanediideLigands”L. Weber, U. Lassahn, H.-G. Stammler,B. Neumann, K. Karaghiosoff, Eur. J.Inorg. Chem. 2002, 3272.

“Synthese und Struktur hochfunktio-nalisierter 2,3-Dihydro-1H-1,3,2-Diazaborole”L. Weber, A. Rausch, H.-G. Stammler,B. Neumann, Z. Anorg. Allg. Chem.2004, 630, 2657.

“Stereospecific Tetramerization of 2-Propynol and Polymerization ofArylacetylenes by Means of[Pt(CO)4][Sb2F11]2“L. Weber, M. Barlmeyer, J.-M.Quasdorff, H. L. Sievers, H.-G.Stammler, B. Neumann,Organometallics 1999, 18, 2497.

Universität Bielefeld

Fakultät für Chemie derUniversität BielefeldUniversitätsstraße 2533615 Bielefeld

www.uni-bielefeld.de/chemie/chemhome.htm


Recommended