+ All Categories
Home > Documents > Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative...

Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative...

Date post: 16-Apr-2020
Category:
Upload: others
View: 6 times
Download: 0 times
Share this document with a friend
87
Tierärztliche Hochschule Hannover Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids INAUGURAL – DISSERTATION zur Erlangung des Grades eines Doktors der Veterinärmedizin - Doctor medicinae veterinariae - ( Dr. med. vet. ) vorgelegt von Oguz Calisici Samsun / Türkei Hannover 2010
Transcript
Page 1: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

Tierärztliche Hochschule Hannover

Investigation of antioxidative capacity in bovine seminal plasma–

Effects of Omega-3 fatty acids

INAUGURAL – DISSERTATION zur Erlangung des Grades eines

Doktors der Veterinärmedizin

- Doctor medicinae veterinariae -

( Dr. med. vet. )

vorgelegt von

Oguz Calisici Samsun / Türkei

Hannover 2010

Page 2: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

Wissenschaftliche Betreuung: Prof. Dr. Heinrich Bollwein

Klinik für Rinder

1. Gutachter: Prof. Dr. H. Bollwein

2. Gutachter: Prof. Dr. H. Sieme

Tag der mündlichen Prüfung: 17.05.2010

Page 3: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

To Duygu and my Parents

Page 4: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials
Page 5: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

Contents 1 INTRODUCTION 1

2 REVIEW OF LITERATURE 2

2.1 Reactive Oxygen Species 2

2.1.1 Definition and existence of reactive oxygen species 2

2.1.2 Oxidative stress 4

2.1.3 Significance of oxidative stress in male reproduction 4

2.1.3.1 Sources of ROS in semen 4

2.1.3.2 Targets and pathological role of ROS in semen 6

Lipids of sperm plasma membrane and lipid peroxidation 7

Damage of DNA 10

Damage of proteins 10

Apoptosis 10

2.1.3.3 Physiological role of ROS in semen 11

2.2 Antioxidants 11

2.2.1 Enzymatic antioxidants 12

2.2.1.1 Superoxide Dismutase 12

2.2.1.2 Glutathione Peroxidase 13

2.2.1.3 Catalase 15

2.2.2 Non-enzymatic antioxidants 15

2.3 Seminal plasma and its antioxidative significance for male reproduction 17

2.3.1 Accessory glands and seminal plasma 17

2.3.2 Antioxidative properties of seminal plasma 18

2.4 Measurement of oxidative stress and antioxidants using chemiluminescence 19

3 OWN EXPERIMENTAL STUDIES 20

3.1 Establishment of a new assay for the determination of total antioxidative

capacity of bovine seminal plasma 20

3.1.1 Abstract 20

3.1.2 Introduction 21

3.1.3 Materials and Methods 22

3.1.3.1 Chemicals 22

3.1.3.2 Semen collection, dilution and freezing 22

3.1.3.3 Handling of seminal plasma 23

Page 6: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

3.1.3.4 Antioxidant assays 23

Total Antioxidant Capacity 23

Instrumentation and automated measurement of TAC SOD and GPx 24

Superoxide Dismutase (SOD) Assay 24

Glutathione Peroxidase (GPx) Assay 25

Determination of protein concentrations 26

Measurements of intra- and inter-assay Variations 26

3.1.3.5 Flow cytometric analyses 26

Plasma Membrane Integrity and Acrosomal Integrity 27

Lipid Peroxidation (LPO) 27

Sperm Chromatin Structure Assay 28

3.1.3.6 Statistical analysis 28

3.1.4 Results 28

3.1.4.1 Reproducibility of TAC-, SOD- and GPx assays 28

3.1.4.2 TAC, SOD and GPx levels in seminal plasma 29

3.1.4.3 Volume and sperm concentration of ejaculates 30

3.1.4.4 Sperm quality 32

3.1.4.5 Relationships between antioxidant levels and between antioxidant levels

and sperm quality 34

3.1.5 Discussion 34

3.2 Effects of feeding omega-3-fatty acids on sperm quality of Holstein Friesian bulls

before and after cryopreservation: Effects on seminal plasma 37

3.2.1 Abstract 37

3.2.2 Introduction 38

3.2.3 Materials and Methods 39

3.2.3.1 Bulls 39

3.2.3.2 Dietary supplementation of bulls 39

3.2.3.3 Semen collection, dilution and freezing 40

3.2.3.4 Handling of seminal plasma and measurement of TAC, GPx and SOD 40

3.2.3.5 Flow cytometric analyses 41

Plasma Membrane Integrity and Acrosomal Integrity 41

Sperm Chromatin Structure Assay 41

3.2.3.6 Fatty acid extraction and analysis 41

Page 7: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

3.2.3.7 Statistical analysis 42

3.2.4 Results 43

3.2.4.1 Fatty acid analysis 43

3.2.4.2 Dietary effects on sperm quality and fatty acid composition 43

3.2.4.3 Effect of feeding ALA on antioxidant levels of seminal plasma 45

3.2.4.4 Correlation between fatty acids and antioxidants 45

3.2.5 Discussion 46

4 SUMMARIZING DISCUSSION AND CONLUSIONS 49

5 SUMMARY 52

6 ZUSAMMENFASSUNG 54

7 REFERENCES 56

8 APPENDIX 75

Page 8: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

List of abbreviations AD acrosome-damaged sperm ALA α-linolenic acid AO acridine orange BP C-11 BODIPY581/591 BSA bovine serum albumin CAT catalase CuZn-SOD copper-zinc SOD CV coefficient of variation DFI DNA fragmentation index DHA docosahexaenoic acid DMSO dimethyl sulfoxide DNA deoxyribonucleic acid EPA eicosapentaenoic acid EDTA ethylene diamin tetra acetic acid FITC-PNA fluorescein isothiocyanate labeled peanut from Arachis h hour HRP horse radish peroxidase H2O2 hydrogen peroxide GPx glutathione peroxidase GRx glutathione reductase GSH glutathione GSSG oxidized GSH L litre LPO lipid peroxidation mg milligram ng nanogram min. minute ml millilitre mM millimole Mn-SOD manganese SOD NADH nicotinamin dinucleotid NADPH nicotinamide adenine dinucleotide phosphate NADP+ oxidized form of NADPH NBT nitro blue tetrazolium NO. nitrite oxide radical OH. hydroxyl radical ONOO- peroxinitrite anion O2

.- superoxide radical PBS phosphate buffer solution PHGPx phospholipid hydroperoxide glutathione peroxidase PI propidium iodide PMI plasma membrane integrity PMS phenazine methosulfate PUFA polyunsaturated fatty acid SFA saturated fatty acid RLU relative chemiluminescence units ROS reactive oxygen species ROO. lipid peroxyl radical RNS reactive nitrogen species

Page 9: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

SD standard deviation SD-DFI standard deviation of DFI SOD superoxide dismutase TAC total antioxidant capacity TBHP t-butyl hydroperoxide μL micro litre 1O2 singlet oxygen

Page 10: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials
Page 11: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

1

1 INTRODUCTION

Bovine semen has been cryopreserved since more than a half century for artificial

insemination and nowadays it is being widely used all over the world. However, it is well

known that the cryopreservation procedure is detrimental to sperm particularly because of

chemical and physical stress factors which are occurring during this process

(HAMMERSTEDT et al. 1990; WATSON 1995; CHATTERJEE and GAGNON 2001). One

important factor is oxidative stress which, in turn, affects biological membranes and DNA of

sperm (AITKEN and KRAUSZ 2001; BALL 2008). Bovine sperm themselves have only few

amounts of endogenous antioxidants for the protection against reactive oxygen species (ROS)

and the main antioxidant source is the seminal plasma (DAWRA and SHARMA 1985;

BILODEAU et al. 2000). Therefore, the development of sensitive techniques for monitoring

the activity of antioxidants in seminal plasma is of clinical importance. Sensitive

chemiluminescence techniques have been employed to monitor total antioxidant capacity of

human seminal fluid (SHARMA et al. 1999).

Polyunsaturated fatty acids (PUFA) play an important role in regulating sperm membrane

fluidity and spermatogenesis (HAIDL and OPPER 1997; OLLERO et al. 2000). After

freezing and thawing, the portion of PUFA in sperm plasma membrane decreases

significantly due to lipid peroxidation (CEROLINI et al. 2001). Low portions of C20 and C22

PUFAs in sperm in old bulls were related to reductions in sperm quality and -fertilizing

ability (KELSO et al. 1997b).

In various feeding experiments polyunsaturated fatty acids (PUFA) have been supplied to

change the fatty acid composition of sperm membrane in order to improve sperm quality and

fertility. Indeed, the fatty acid profile of sperm membranes can be modified with diet and an

improvement of sperm quality was observed in a variety of livestock species including

chicken, turkey, boar and stallion (KELSO et al. 1997a; ROOKE et al. 2001; BLESBOIS et al.

2004; BRINSKO et al. 2005). However, it is possible that feeding of PUFAs reduces also the

antioxidative capacity of semen which, in turn, can (SURAI et al. 2000b; CASTELLINI et al.

2003) disturbs sperm quality in the case of excessive ROS production.

The aims of this study were: (i) to determine total antioxidant capacity of bovine seminal

plasma and its relationship with other antioxidants and sperm quality; (ii) to ascertain whether

feeding omega-3-fatty acid reduces the antioxidative status of seminal plasma.

Page 12: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

2

2 REVIEW OF LITERATURE

2.1 Reactive Oxygen Species

2.1.1 Definition and existence of reactive oxygen species

A free radical is any species capable of independent existence that contains one or more

unpaired electrons (HALLIWELL 1989). A radical can be neutral or positively or negatively

charged. HALLIWELL and GUTTERIDGE (1989) defined reactive oxygen species (ROS) as

a collective term which includes oxygen radicals (e.g. Superoxide radical and Hydroxyl

radical) as well as some highly reactive derivates of O2 that do not contain unpaired electrons

(non-radicals) such as hydrogene peroxide (H2O2), singlet oxygen (1O2) and hypochlorous

acid (HOCl). ROS have different abilities to react with many structural and functional

important molecules in living organisms.

There are some nitrogen-derived free radicals called reactive nitrogen species (RNS, e.g.,

nitrite oxide (NO.) and peroxinitrite anion (ONOO-) which are considered as a subclass of

ROS (SIKKA 2001). Some of ROS and RNS are summarized in Table 1-1.

The superoxide radical (O2.-) is the main free radical and an example of free radicals with

intermediate reactivity (FRIDOVICH 1983; SIKKA 2001). One-electron reduction of O2

produces the superoxide radical, O2-. This is frequently written as O2

.- where the dot denotes a

radical species, that is an unpaired electron. It is negatively charged and produced in

biological systems during electron transport (during respiration) in mitochondria. It can not

rapidly cross the lipid membrane bilayer (KRUIDENIER and VERSPAGET 2002). However,

superoxide is a precursor of other, more powerful ROS. It can participate in the production of

more powerful radicals as an oxidizing agent or by donating an electron and thereby reducing

Fe3+ and Cu2+ to Fe2+ and Cu+, as follows:

O2.- + Fe3+/Cu2+ Fe2+/Cu+ + O2 (step 1, reduction of ferric ion to ferrous).

Further reactions between transition metals (Fe2+ or Cu+) and H2O2 are the source of the

hydroxyl radical (OH.) and called as Fenton reaction:

H2O2 + Fe2+/Cu+ OH. + OH- + Fe3+/Cu2+ (step 2, fenton reaction).

Page 13: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

3

The concerted action of O2.- and H2O2 to generate OH. (steps 1 and 2) is described as the

“Haber-Weiss” reaction:

O2.- + H2O2 OH. + OH- (net reaction).

The Haber-Weiss reaction is catalysed by transition metal ions, especially iron ions. The

hydroxyl radical is one of the biologically most important ROS intermediates and is a strong

oxidizing species with an estimated half life of about 10-9 seconds (HALLIWELL 1989;

HALLIWELL and GUTTERIDGE 1990). O2.- and H2O2 are not considered to be as reactive

as the hydroxyl radical. H2O2 is not a radical and relatively stable. H2O2 has high biological

diffusion properties (e.g. mitochondrial) (SIKKA 2001; ORRENIUS 2007) whereas the O2.-

can not cross biological membranes except in the protonated form (TURRENS 2003).

Table 1-1: Reactive oxygen and reactive nitrogen species modified from DARLEY-USMAR

et al. (1995).

Reactive oxygen species (ROS)

Radicals Non-Radicals

Alkoxyl radical, RO. Hydrogen peroxide, H2O2

Hydroxyl radical, HO. Hypochlorous acid, HOCl

Hydroperoxyl radical, HOO. Singlet oxygen, 1O2

Peroxyl radical, ROO. Ozone O3

Superoxide anion radical, O2.- Lipid peroxides, LOOH

Reactive nitrogen species (RNS)

Radicals Non-Radicals

Nitric oxide radical, NO. Nitrous acid, HNO2

Nitrogen dioxide, NO2. Dinitrogen trioxide, N2O3

Dinitrogen tetroxide, N2O4

Peroxynitrite, ONOO-

Alkyl peroxynirites, LOONO

Page 14: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

4

2.1.2 Oxidative stress

All cells need O2 to produce efficient energy in mitochondria. The mitochondrial electron

transport system consumes more than 85 % of all oxygen consumed by the cell. On the other

hand, oxygen consumption generates by-products called ROS, because 1-3% of electrons

escape from the chain of that transport system and univalent reduction of molecular oxygen

results in superoxide formation (HALLIWELL 1990; HALLIWELL and CROSS 1994;

HALLIWELL 2006).

Aerobic cells are normally exposed to ROS but they can survive under toxic conditions of

oxygen because they have protector molecules against this oxygen toxicity, the antioxidants

(HALLIWELL 2006). Normally, continuous production of ROS and activated oxygen species

in the body is controlled tightly by antioxdants. If this sensitive equilibrium between oxidants

and antioxidants is disordered, oxidative stress occurs which, in turn, increases the rates of

cellular damage. SIES (1991; 1993) defined the oxidative stress as a disturbance in

prooxidant-antioxidant balance in favor for prooxidant.

2.1.3 Significance of oxidative stress in male reproduction

2.1.3.1 Sources of ROS in semen

The production of ROS in sperm was noticed by MACLEOD (cited by AITKEN 1994) in

1943. However, a relationship between oxidative stress and male infertility was not observed

before the 1980s. The major reasons for the occurence of oxidative stress are depletion of

seminal antioxidants and an excess generation of free radicals by the spermatozoa themselves

(WATHES et al. 2007).

MACLEOD (1943) reported a toxic effect of O2 towards sperm. He noticed that the increase

of O2 concentration resulted in a more rapidly loss of sperm motility and suggested that H2O2,

generated by the cells themselves from O2, was an actual toxic agent. Three years later,

TOSIC and WALTON (1946) described deleterious effects of H2O2 on bovine sperm motility

and viability (cited by VERNET et al. (2004)). Preliminary studies showed that processes

used in assisted reproductive techniques like the removal of seminal plasma and

centrifugation, respectively, induce a sudden burst of ROS production in sperm (IWASAKI

and GAGNON 1992). All cells actively respiring generate ROS as a consequence of electron

Page 15: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

5

leakage from intracellular redox systems, such as the mitochondrial electron transport system.

In addition, it is known that cells generate ROS as a by-product of enzymatic activities of

some oxidases (amino acid oxidase, xanthine oxidase), peroxidases (horseradish peroxidase,

thyroid peroxidase) and oxygenases (indolamine dioxygenase, cytochrome P450 reductase)

(AITKEN and BAKER 2004). In sperm two major systems are responsible for the ROS

production. The main system that produces ROS in sperm is the NADH dependent oxido-

reductase (diphorase) at the level of mitochondria (GAVELLA and LIPOVAC 1992;

KOPPERS et al. 2008). The other ROS producing system is the NADPH oxidase system that

has been shown to be present at the level of sperm plasma membrane (AITKEN et al. 1992).

TOSIC and WALTON (1950) have shown that in bovine semen, ROS are also generated via

the oxidative deamination of aromatic acids (TOSIC and WALTON 1950). In agreement with

the results of TOSIC and WALTON (1950), SHANNON and CURSON (1982) have detected

an activity of L-amino acid oxidase (belongs to the family of oxidoreductases) located in the

tail of bovine sperm.

There is evidence that immature spermatozoa are able to produce ROS that are negatively

correlated with sperm quality (OLLERO et al. 2001; AGARWAL and SALEH 2002). In

addition, peroxidase-positive leukocytes (mainly polymorphonuclear leukocytes and

macrophages) are other sources of ROS in semen (Figure 1-1) (OCHSENDORF and FUCHS

1997).

Page 16: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

6

Figure 1-1: Role of oxidative stress in male infertility modified from SIKKA (2004) and

TREMELLEN (2008).

2.1.3.2 Targets and pathological role of ROS in semen

The harmful effects of ROS on sperm function can occur in many ways. AITKEN et al.

(1991) showed that there is an inverse relationship between ROS generation in semen and

fertility in vitro and in vivo. IWASAKI and GAGNON (1992) reported that the ROS level

correlates inversely with the percentage of motile spermatozoa.

Reactive oxygen species can attact all major classes of biomolecules, membrane lipids,

proteins, nucleic acids and carbohydrates (AITKEN et al. 1989; SIKKA et al. 1995; AITKEN

and BAKER 2004).

Oxidative Stress

Seminal Plasma

Balance between antioxidants and ROS

Antioxidants

Superoxide Dismutase (SOD) Glutathione Peroxidase (GPx) Catalase (CAT) Vitamin A Vitamin E etc.

ROS-Generation System

NADPH oxidoreductase Cryopreservation Centrifugation Immature Germ Cells Cytoplasmic Droplets Leukocytes etc.

• Damage of Lipids (LPO) • DNA Damage • Protein Damage • Biomembrane Damage

Decreased Motility, Viability, Capacity, Acrosome Reaction

Infertility

Page 17: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

7

Lipids of sperm plasma membrane and lipid peroxidation

The plasma membrane of mammalian sperm contains high concentrations of polyunsaturated

fatty acids (PUFAs) (LENZI et al. 1996). Almost 60% of fatty acids in bovine sperm is

docosahexaenoic acid (SALEM et al. 1986). It contains 22 carbons and six unsaturated double

bonds per molecule [22:6 (n-3)]. Counted from the end of the carbon chain its first double

bond is at the third carbon position (n-3). Thus, it is referred to as ω−3 fatty acid. The α-

linolenic acid (ALA), eicosapentaenoic acid [EPA; 20:5 (n-3)] and DHA are the most

important, nutritionally-essential ω-3 fatty acids. The main dietary source of ω -3 fatty acids

are fish, plants and nut oils. DHA and eicosapentaenoic acid (LEPAGE and ROY 1986) are

found in cold-water fish. ALA is found in flaxseed, flaxseed oil, canola oil and soybean

(FRIEDMAN and MOE 2006).

The short chain polyunsaturated fatty acid ALA is a precursor of important long chain

polyunsaturated fatty acids such as DHA. It can not be synthesized by animal tissues, as they

lack desaturase enzymes for their synthesis, and so must be supplied in the diet (WATHES et

al. 2007). Furthermore, the mammalian body can convert ALA to another ω-3 using specific

desaturase enzymes (Figure 1-2) (FRIEDMAN and MOE 2006).

DHA plays an important role in regulating sperm membrane fluidity and spermatogenesis

(HAIDL and OPPER 1997; OLLERO et al. 2000). The amount of DHA in plasma membrane

of sperm is decreased during the process of sperm maturation and there is a cell-to-cell varia-

bility in the concentration of DHA in sperm (OLLERO et al. 2000).

Page 18: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

8

Figure 1-2: The metabolic elongation pathway of omega-3 fatty acids modified from

FRIEDMAN and MOE (2006).

The fluidity of plasma membrane is important for fusion events associated with fertilization

(AITKEN and BAKER 2004). However, unsaturated fatty acids with two or more double

bonds are particularly susceptible to free radical attack. The reason for susceptibility of

unsaturated fatty acids to free radical attack is the presence of a double bond adjacent to a bis

allylic methylene (CH2) group (BROUWERS and GADELLA 2003). This makes the

methylene C-H bonds weaker. Therefore, hydrogen is more susceptible to abstraction on this

site. The initiation of lipid peroxidation cascade is induced by the abstraction of this weakly

bound hydrogen atom from the methylene group. Three distinct reaction steps have been

elucidated for lipid peroxidation: initiation, propagation and termination (AGARWAL and

PRABAKARAN 2005).

18:3n-3 (α-Linolenic acid)

18:4n-3

20:4n-3

20:5n-3

20:6n-3

Δ6 Desaturase

Elongase

Δ5 Desaturase

Sprecher Pathway

* Vegetable oils (soybean, canola,

flaxseed, etc.)

* denotes pirimary dietary source

* Cold water fish

OMEGA-3 FATTY ACIDS

Page 19: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

9

After the initiation step, a lipid alkyl radical (alkylradical) is formed. The lipid alkyl radical

stabilizes by forming a conjugated diene radical and reacts easily with oxygen forming a lipid

peroxyl radical (ROO.) by the propagation step (Table 1-2). This can abstract other hydrogen

atoms of an unsaturated lipid, resulting in a free radical chain reaction and finally lipid

hydroperoxides (ROOH or named as LOOH) are formed. The transition metals such as iron

can accelerate the process of LPO. Propagation of LPO depends on the antioxidant defense

systems of spermatozoa and seminal plasma (AGARWAL and SALEH 2002). The last

process of LPO is the termination step. In general, the chain reaction stops at this step since

two radicals react and produce a non-radical species. Chain breaking antioxidants like

Vitamin E can speed up the termination by catching free radicals (BROUWERS and

GADELLA 2003; AGARWAL and PRABAKARAN 2005).

One of the naturally occurring products of LPO is malondialdehyde. Many authors have

determined its concentration to monitor the degree of peroxidative damage in spermatozoa

(AITKEN and FISHER 1994). AITKEN et al. (1989; 1994) showed that the results of a

malondialdehyde assay correlate well with defective sperm function in terms of motility and

the capacity of sperm oocyte fusion. It has been shown that bulls with higher sperm lipid

peroxidation have lower chance to sire calves (KASIMANICKAM et al. 2007). Furthermore,

sperm lipid peroxidation was negatively correlated with sperm plasma membrane integrity

(PMI) and DNA fragmentation index (KASIMANICKAM et al. 2007).

Table 1-2: Steps of lipid peroxidation adapted from AGARWAL and PRABAKARAN (2005).

1) Initiation: LH + R. L. + RH

2) Propagation: L. + O2 LOO.

LH + LOO. LOOH + L.

L. + O2 LOO.

3) Termination: L. + L. LL

LOO. + LOO. LOOL + O2

LOO. + L. LOOL

Page 20: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

10

Damage of DNA

The integrity of DNA is important for the development of embryos (AITKEN and KRAUSZ

2001). Normally, the characteristic tight packaging of the sperm DNA and the antioxidants in

seminal plasma constitute two important protecting factors of sperm DNA integrity (TWIGG

et al. 1998a; TWIGG et al. 1998b).

If oxidative stress occurs as a result of an imbalance between excessive generation of ROS

and antioxidants, it is one of the most important causes of abnormal DNA structure

(ERENPREISS et al. 2006). DNA bases and phosphodiester backbones are very susceptible to

peroxidation. It has been suggested that high levels of ROS are responsible for high

frequencies of DNA strand breaks observed in the sperm of infertile men (FRAGA et al.

1996; AITKEN and KRAUSZ 2001). In bull, DNA fragmentation index of sperm evaluated

by SCSA was negatively correlated with fertility (BALLACHEY et al. 1987;

JANUSKAUSKA et al. 2001).

Damage of proteins

Amino acids containing thiol groups are very susceptible to oxidative stress. Damage of ROS

to proteins has been implicated in the oxidative inactivation of several metabolic enzymes

associated with aging (OLIVER et al. 1987). There is evidence that the protein oxidation of

sperm is associated with decreased sperm motility and fertilizing ability (CHEN et al. 2001;

DUTEAUX et al. 2004).

Modification of amino acid side chains to carbonyl derivates (i.e., aldehyde and ketones) and

fragmentation of polypeptid chains are some possible outcomes of protein oxidation reactions.

Determination of carbonyl content in proteins is a commonly used method to measure

oxidative protein damage (FAGAN et al. 1999).

Apoptosis

Apoptosis is the process of programmed cell death that is a physiologically occurring event

during an organism`s life cycle (HENGARTNER 1997). For example, apoptosis of testicular

germ cells occurs throughout life. In this way, the overproliferation of germ cells can be

controlled. Spontaneous apoptosis occurs in seminoferous epithelium and affects spermato-

Page 21: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

11

gonia, spematocytes, and spermatids (KERR et al. 1972; BILLIG et al. 1995; RODRIGUEZ

et al. 1997).

ROS plays an important role in apoptosis induction under both physio- and pathological

conditions. The release of cytochrome c from mitochondria, which in turn triggers caspase

activation, is mediated by direct or indirect ROS action. It has been recently shown that

apoptosis can be induced by cryopreservation. MARTIN et al. (2004) showed that cryopreser-

vation causes apoptotic like mechanism in bovine sperm.

2.1.3.3 Physiological role of ROS in semen

After ejaculation, spermatozoa undergo a series of physiological changes in female genital

tract. These changes called capacitation and acrosome reaction are triggered by the zona

pellucida of the ovum (AUSTIN and BISHOP 1958; HUNTER and RODRIGUEZ-

MARTINEZ 2004). In vitro studies demonstrated that administration of O2.- and H2O2

promotes capacitation and acrosome reaction and the addition of appropriate antioxidants

prevents them from undergoing these events (DE LAMIRANDE et al. 1997). ZINI et al.

(1995) have shown that low levels of NO. promote human sperm capacitation. Furthermore, it

has been shown that NO. plays a role in sperm hyperactivation and in zona pellucida binding

(DE LAMIRANDE et al. 1997; SENGOKU et al. 1998). Therefore, it has been mentioned

that the acrosome reaction and capacitation are redox-regulated (free radical regulated)

processes which allow the sperm to fertilize the egg.

2.2 Antioxidants

During the evolution living organisms developed specific mechanisms to protect themselves

from the deleterious effects of ROS and RNS (HALLIWELL 1990). Antioxidants are

substances that delay or prevent oxidation of that substrates (HALLIWELL 1990). They can

counteract the damaging effects of free radicals in three major manners. Three different

antioxidant defense systems are summarized in Table 1-3.

Page 22: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

12

Table 1-3: Different levels of antioxidant defence in animal cells adapted from SURAI (1999).

First level of defence

Prevention of radical

formation

SOD, GPx, CAT, Glutathione (GSH) and Thioredoxin

systems and Metal-binding proteins

Second level of defence

Prevention and restriction

of chain formation and

propagation

Vitamins A, E, C, Caratenoids, Ubiquinols, Glutathione,

Uric acid

Third level of defence

Excision and repair

of damaged parts of

molecules

Lipases, Peptides, Proteases, Transferases, DNA-repair

enzymes etc

The antioxidative compounds are located in organelles, subcellular compartments or the

extracellular space. They can be classified as enzymatic and non-enzymatic antioxidants:

- Enzymatic antioxidants: superoxide dismutase (SOD), glutathione peroxidase

(GPx), catalase (CAT)

- Non-enzymatic antioxidants: vitamin E, vitamin A, Selenium, vitamin C etc.

2.2.1 Enzymatic Antioxidants

2.2.1.1 Superoxide Dismutase (SOD)

Superoxide dismutase was discovered by MCCORD and FRIDOVICH in 1969 (MCCORD

and FRIDOVICH 1969). This enzyme removes O2.- by catalyzing its dismutation, O2

- being

re-duced to H2O2 and O2 (2O2.- + 2H+ H2O2 + O2).

SOD scavenges both intracellular and extracellular O2.-, but it should be considered that SOD

in cells work in conjunction with H2O2-removing enzymes such as GPx or CAT to prevent the

Page 23: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

13

action of H2O2, which in turn, promotes the formation of hydroxyl radicals (HALLIWELL

1989; AGARWAL et al. 2005).

The SOD reacts with O2.- molecules at an extremely rapid rate and speed up the dismutation

reaction remarkably, thus lowering the tissue concentration of O2.-. SOD in animal tisssues

exists in multiple forms, e.g., a copper-zinc SOD (CuZn-SOD; available in cytosol), a

mitochondrial manganese SOD (Mn-SOD), and an extracellular CuZn-SOD (FRIDOVICH

1995). The transition metals (Cupper, iron or mangan) are located at the active center of these

enzymes.

The SOD has been detected in spermatozoa and seminal plasma of different species and the

CuZn-SOD was the major form SOD. The presence of other forms is a matter of controversy

(ABU-ERREISH et al. 1978; MENNELLA and JONES 1980; ALVAREZ and STOREY

1984). In mouse, about 9 % of sperm SOD activity was attributed to the Mn-SOD probably

residing in the mitochondria (ALVAREZ and STOREY 1984). In contrast, KOBAYASHI et

al. (1991) did not detect Mn-SOD activity in human sperm and seminal plasma.

2.2.1.2 Glutathione Peroxidase (GPx)

The major enzymatic system for the control of cellular peroxide levels consists of glutathione

peroxidases and several ancillary enzymes required for the synthesis and reduction of

glutathione (GSH). The GPx enzyme is made up of four protein subunits, each of them

containing one atom of the selenium bound to a cysteine protein (selenocystein) at its active

site (FORSTROM et al. 1978). However, there are some seleno-independent isoenzymes of

GPx like GPx5 and GPx6 proteins. These isoenzymes contain a cystein residue instead of a

selenocystein residue (HALL et al. 1998; HERBETTE et al. 2007).

GPx reduces H2O2 and lipidic or nonlipidic-hydroperoxides while oxidizing two molecules of

its subtrate, glutathione (H2O2 + 2GSH GSSG (ozidized GSH) + 2H2O). GSH is a low-

molecular-weight thiol compound. As a simple tripeptide it is composed of glutamic acid-

cysteine-glycine. A high concentration of GSH (~5 mM in animal cells) is present in almost

every cell (HALLIWELL and GUTTERIDGE 1989). This takes place by reduction of GSSG

to GSH by glutathione reductase (GRx). GRx contains two protein subunits, each with the

flavin FAD at its active sites. FAD needs NADPH (Nicotinamide adenine dinucleotide

phosphate) to reduce GSSG (MEISTER 1988) (GSSG + NADPH + H+ 2GSH + NADP+).

Page 24: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

14

The NADPH is mainly provided in animal tissues by a complex metabolic pathway known as

the oxidative pentose phosphate pathway (or called as Hexose Monophosphate Shunt). In this

pathway, NADPH stems from the reaction (Figure 1-3) catalysed by glucose-6-phosphate

dehydrogenase (HALLIWELL and GUTTERIDGE 1989).

Figure 1-3: Schematic glutathione redox-cycle adapted from OCHSENDORF and FUCHS

(1997): H2O2 is reduced by GPx, glutathione (GSH) is oxidized and thereafter reduced by

glutathione reductase (GRx) utilizing NADPH. NADPH is available by the

Hexosemonophosphate-shunt system.

In somatic cells, 60-75 % of GPx activity is found in the cytoplasm and 25-40 % in the

mitochondria (ZAKOWSKI et al. 1978). At least four types of selenium-dependent GPx exist

in mammalian body, called GPx1, GPx2, GPx3, and GPx4. Selenium is essential for catalysis

in all four types of GPx (BRIGELIUS-FLOHE and TRABER 1999). The GPx4 is called

phospholipid hydroperoxide glutathione peroxidase (PHGPx) because of its ability to reduce

not only H2O2 but also fatty acid hydroperoxides to alcohols (FORESTA et al. 2002). On the

other hand, in the male genital tract, an selenium-independent isoenzyme of GPx (GPx5) has

GRx

GSSG

GSH

H2O2

NADPH

NADP+

Hexose Monophosphate Shunt-system

H2O

GPx

Page 25: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

15

been identified at both protein and mRNA level (HALL et al. 1998; VERNET et al. 2004;

CHABORY et al. 2009).

In bovine seminal plasma a non-selenium-dependent GPx and a selenium-dependent GPx

have been detected (KANTOLA et al. 1988; BILODEAU et al. 2000). It has been reported

that the selenium-dependent GPx activity accounted for one third of total GPx activity and is

negatively correlated with the malondialdehyde level and acrosomal damage (SLAWETA and

LASKOWSKA-KLITA 1985; KANTOLA et al. 1988; SLAWETA et al. 1988).

2.2.1.3 Catalase

Catalase is present in all major body organs of animals, being especially localized in liver and

erythrocytes. It removes H2O2 within cells according to the following equation:

2H2O2 2H2O + O2

It consists of four protein subunits, each of which contains a heme (Fe (III)-protoporphyrin)

group bound to its active site (AEBI 1984). Each subunit also usually contains one molecule

of NADPH bound to it. This helps to stabilize the enzyme (KIRKMAN et al. 1987). Disso-

ciation of catalase into its subunits causes loss of its activity. Dissociations can occur easily

on storage, freeze-drying, or exposure of the enzyme to acid or alkali (HALLIWELL and

GUTTERIDGE 1989). The catalase activity of animal tissues is largely located in subcellular

organelles known as peroxisomes. Mitochondria and the endoplasmic reticulum contain little

catalase actvity. (MARKLUND et al. 1982; HALLIWELL and GUTTERIDGE 1989).

An activity of catalase has been found in seminal plasma of different species (BALL et al.

2000; BILODEAU et al. 2000; ZINI et al. 2002). However, its presence in sperm is a matter

of controversy (TRAMER et al. 1998). Catalase activity in human sperm and seminal plasma

was demonstrated using different methods (JEULIN et al. 1989; ZINI et al. 2002).

BILODEAU et al. (2000) noticed a low level of catalase activity in bovine seminal plasma but

they did not find any catalase activity in sperm.

2.2.2 Non-enzymatic antioxidants

In addition to enzymatic defence systems, there are extensive non-enzymatic antioxidant

compounds consisting of several different types of lipid and water-soluble small molecules

(SIKKA et al. 1995; AGARWAL et al. 2005). These molecules are able to scavenge free

Page 26: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

16

radicals. Lipid-soluble scavengers are especially vitamin E and β-Carotene. Water-soluble

scavengers are vitamin C (ascorbic acid) and GSH. Furthermore, there are a lot of other

antioxidant compounds like selenium, zinc, uric acid, ceruloplasmin, taurine etc. (SIES 1993).

EVANS and BISHOP (1922) have discovered vitamin E as a “fertility vitamin (or fertility

factor)”. They showed that some plant oils reduced the occurrence of foetal mortality in diet-

restricted rats. This “fertility factor” was later isolated and characterized as tocopherol (BELL

1987). Vitamin E is a collective name of 8 fat-soluble vitamins (tocopherols and tocotrienols)

with antioxidant properties (HERRERA and BARBAS 2001). Of these, -Tocopherol has the

highest biological activity and is the most abundant form in nature (BRIGELIUS-FLOHE and

TRABER 1999). The ability of vitamin E to quench ROS and its hydrophobicity have led to

its common definition as the single most important essential lipid-soluble antioxidant

(BURTON 1994). When tocopherol quenches a lipid peroxyl radical, it is oxidated to the

tocopheroxy radical. Tocoperoxy radical accepts hydrogen to regenerate the tocopherol,

which makes this first oxidation step fully reversible. Vitamin E is present both in sperm

membranes and in seminal plasma (AGARWAL and PRABAKARAN 2005). Vitamin E and

Selenium act synergistically and protect the biomembranes from oxidative attack. Vitamin E

reduces alkyl peroxyl radicals of unsaturated lipids of cell membranes, thereby generating

hydroperoxides that can be removed by the Se-dependent peroxidases (MAIORINO et al.

1989; BRIGELIUS-FLOHE and TRABER 1999).

Carotene is the precursor of vitamin A, an important lipophilic antioxidant in animal tissues.

Carotenoid pigments such as β-Carotene are able to function as effective quenchers of ROS

(AGARWAL et al. 2005). β-Carotene was found to act synergistically with tocopherol and it

is capable of regenerating tocopherol from the tocopheroxyl radical (PALOZZA and

KRINSKY 1992). Large amounts of carotenoid pigments occur in male gonads and accessory

genital glands of mammals. The significance of vitamin A in developing and maintaining the

normal germinal epithelium in animals has been emphasized by several studies (PALLUDAN

1966). It is an essential vitamin for spermatogenesis in rats (HUANG and HEMBREE 1979).

Selenium, as a cofactor for glutathione peroxidase, is an important trace element and plays a

crucial role in enzymatic antioxidantive defence system. It is an essential trace element for

animals. Selenoenzymes (e.g. glutathione peroxidases, thioredoxin reductases) contain Se in

the form of selenocysteine, an amino acid that is identical to cysteine, except that selenium

Page 27: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

17

replaces sulphur (PAPPAS et al. 2008). In spermatozoa, Selenium is abundantly localized in

midpiece region (CALVIN 1981). In rat sperm, Selenium deficiency causes reduction of

spermatogenesis and abnormal sperm morphology characterized by morphological midpiece

alterations (WU et al. 1979).

In spermatids, selenium-containing PHGPx occurs as an active peroxidase. In mammalian

tissues, the highest PHGPx acitivity was found in the testis (URSINI et al. 1995). It plays an

important role during spermiogenesis, maturation of spermatozoa and embryonic develop-

ment. On the other hand, this enzyme is transformed to an oxidatively inactivated protein in

mature sperm and is contributed as a main constituent of the mitochondrial capsule in the

midpiece (FORESTA et al. 2002). The activity of PHGPx is lower in sperm of infertile men

sperm compared to that of fertile men (FORESTA et al. 2002).

Although the GPx activity in bovine seminal plasma is higher than in spermatozoa (BROWN

et al. 1977; BILODEAU et al. 2000), selenium is found also in the spermatozoa in

considerable concentrations. In bulls, the Selenium concentration in seminal plasma is about

10 times higher than in serum (SAARANEN et al. 1986). Furthermore, it is known that the 75Se is faster incorporated into seminal plasma than into the spermatozoa of bulls (SMITH et

al. 1979). This may explain the fact that seminal plasma GPx levels increase rapidly after an

injection of Selenium to bulls (BARTLE et al. 1980).

2.3 Seminal plasma and its antioxidative role in male reproduction

2.3.1 Accessory glands and seminal plasma

Seminal plasma is the name for secretes originating from accessory glands (PETZOLT 2001).

Immature sperm complete their passage through the epididymis and get matured. Thereafter,

they will be transported via vas deferens and mixed with the seminal plasma before

ejaculation. There are developmental differences of accessory glands between species.

According to these differences, the amounts of secretions from the particular accessory glands

vary between species (DÖCKE 1963). Seminal plasma is produced by epididymidis, ampulla

ductus deferentis, prostate, vesicula seminalis, bulbo-urethral glands and urethral glands. The

size and secretory output of accessory glands are regulated by testosterone (PETZOLT 2001).

The amounts of seminal plasma vary considerably between species. The secretions of the

Page 28: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

18

seminal vesicles and the prostate are qualitatively and quantitatively the most important ones

in domestic animals (DÖCKE 1963).

The main organic and inorganic constituents of bovine seminal plasma are sodium, potassium,

calcium and chloride, bicarbonate, phosphate, citrate, fructose, zinc, iron, copper

(ROTHSCHILD and BARNES 1954; KIRTON et al. 1964). These constituents maintain the

osmotic pressure in the semen and provide the required energy.

Seminal plasma plays crucial regulative roles in the processes prior to oocyte penetration of

the spermatozoa. The functions of seminal plasma are based on direct or indirect interactions

with spermatozoa (WABERSKI 1995):

direct functions: nutrition of spermatozoa, protection against oxidative and osmotic

stresses, regulation of motility, capacitation, gamete recognition and binding

indirect functions: enhancement of uterine contractions, relaxation of the tubal isthmus,

immune modulation of the uterus.

2.3.2 Antioxidant properties of seminal plasma

The major antioxidative defence mechanisms in cells are the enzymes SOD, GPx and CAT.

However, in spermatozoa, the cytoplasmic space available for these enzymes is very limited.

For example mouse fibroblasts have an intracellular water space of 150 µl/108 cells

(WOHLHUETER et al. 1978) whereas the total water space of human spermatozoa ranges

between 1.7 and 2.6 µl/108 cells (GLANDER and DETTMER 1978; FORD and HARRISON

1983). As sperm have only limited antioxidative defence mechanisms, seminal plasma is the

main antioxidant source in semen (BILODEAU et al. 2000). Deficiencies in this protective

milieu have been associated with oxidative stress and male infertility. For example, the

surgical ablation of the male accessory glands is associated with oxidative stress followed by

high levels of DNA damage in sperm and embryonic loss (O et al. 2006).

A variety of factors like diet can deplete the antioxidative status of seminal plasma. Feeding

experiments with more PUFAs have shown that the antioxidant status and sperm quality can

be impaired. On the other hand, it has been demonstrated that the negative effects of PUFA

supplementation can be reversed with vitamin E addition (CASTELLINI et al. 2003).

Page 29: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

19

2.4 Measurement of oxidative stress and antioxidants using chemiluminescence

The susceptibility of sperm to oxidative stress is an important factor of defective sperm

function and impaired fertility (AITKEN and CLARKSON 1987). Therefore, the

development of sensitive techniques for monitoring the activity of antioxidants and the levels

of ROS generation is of clinical importance. In general, the determination of the rate of ROS

production using different tests can be used to quantify oxidative stress (SHARMA et al.

1999; PASQUALOTTO et al. 2008). Nevertheless, due to a very short half-life of ROS,

clinical examination of ROS production is limited and needs attention under specific

controlled conditions (SIKKA et al. 1995).

Sensitive chemiluminescence techniques have been developed to monitor total antioxidant

capacity of seminal fluid and ROS generation in semen (AITKEN et al. 1992; AITKEN et al.

2004). Luminol is most commonly used in these chemiluminescence techniques. AITKEN et

al. (1992) suggested that the basic luminol signal depends upon the intracellular oxidation of

this probe by ROS of the whole ejaculate. The hydrogen peroxide oxidizes luminol through

mediation of an intracellular peroxidase. Furthermore, it was noticed that the addition of horse

radish peroxidase to the incubation medium resulted in an elevated signal since it allows

extracellular hydrogen peroxide to contribute to the chemiluminescence. This let to the

conclusion that the combination of luminol and horse radish peroxidase constitutes an

excellent assay for routine chemiluminescence analysis of ROS at intra- and extracellular

levels (SHARMA et al. 1999).

Page 30: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

20

3 OWN EXPERIMENTAL STUDIES

3.1 Establishment of a new assay for the determination of total antioxidative capacity of

bovine seminal plasma

3.1.1 Abstract

The aim of the present study was to establish an assay for the measurement of total

antioxidant capacity (TAC) of bovine seminal plasma. In addition, relationships between

TAC and other antioxidants in seminal plasma and parameters of sperm quality, respectively,

should be investigated. Eight consecutive ejaculates were collected from 9 Holstein-Friesian

bulls. TAC-, glutahione peroxidase- (GPx) and superoxide dismutase assays (SOD) were

modified for use in an automated 96-well microplate reader. Plasma membrane integrity

(PMI) and acrosomal damage (AD) were evaluated flow cytometrically before and

immediately after cryopreservation. The DNA fragmentation index (DFI) was determined

after cryopreservation by using sperm chromatin structure assay (SCSA). The level of

membrane lipid peroxidation (LPO; oxidation of lipiphilic probe C11-BODIPY581/591) was

assessed without and with induction of LPO using t-butyl hydroperoxide (TBHP) before

cryopreservation, immediately (0h) and 3 hours (3h) after thawing. The intra-assay

coefficients of variation (CV) for TAC-, SOD- and GPx were 5.0 %, 3.5 % and 6.2 %,

respectively. The inter-assay CVs for the TAC-, SOD- and GPx were 8.3 %, 3.6 % and

8.3 %, respectively. Levels of TAC, SOD and GPx differed (P < 0.0001) between bulls but

not (P > 0.05) between ejaculates within bulls. A negative correlation (r=-0.76; P ≤ 0.05) was

observed between SOD and GPx, but no other relationships (P > 0.05) were detected between

antioxidants. TAC was negatively related with TBHP-LPO 0h (r=-0.85; P ≤ 0.01). Positive

correlations were found between SOD and LPO at 0h (r=0.71; P ≤ 0.05) and 3h (r=0.80;

P ≤ 0.05). There were no (P > 0.05) associations between DFI and antioxidants levels of

seminal plasma. The results of this study show that the total antioxidant capacity differs

between bulls and gives valuable information about the sensitivity of sperm against lipid

peroxidation of cryopreserved sperm.

Page 31: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

21

3.1.2 Introduction

The cryopreservation procedure is detrimental to sperm particularly because of chemical and

physical stress factors which are occurring during this process (HAMMERSTEDT et al. 1990;

ASHWORTH et al. 1995). The susceptibility of cryopreserved sperm to damage induced by

reactive oxygen species (ROS) is well known (AITKEN and FISHER 1994; BILODEAU et al.

2002; AITKEN and BAKER 2004). Toxic levels of ROS can affect sperm quality and

function. In particular, two reasons for this susceptibility have been emphasized in the past.

These are the increased generation of ROS and the lower levels of antioxidants after

cryopreservation (AITKEN and FISHER 1994; BILODEAU et al. 2000). This imbalance

between production of ROS and cellular antioxidants is defined as oxidative stress (SIKKA et

al. 1995).

Mammalian sperm are endowed with a high content of polyunsaturated fatty acids within the

plasma membranes which are particularly susceptible to free radical attack and consequently

lipid peroxidation (POULOS et al. 1973; JONES and MANN 1977; JONES et al. 1979;

AITKEN and FISHER 1994; DE LAMIRANDE and GAGNON 1995; SIKKA et al. 1995).

Membrane lipid peroxidation (LPO) can lead to alterations of membrane fluidity and these

alterations have deleterious effects on sperm function, e.g. ability to fuse with oocytes

(STOREY 1997; BALL 2008).

It has been shown that bovine sperm themselves have only few amounts of endogenous

antioxidants for the protection against ROS and the main antioxidant source is the seminal

plasma (DAWRA et al. 1984; DAWRA and SHARMA 1985; BILODEAU et al. 2000).

Seminal plasma contains both enzymatic ROS scavengers, including superoxide dismutase

(SOD), glutathione peroxidase (GPx), catalase (CAT), and low molecular weight scavengers

(i.e. vitamin E, selenium, ascorbic acid, and vitamin A) (SIKKA et al. 1995; AGARWAL and

SALEH 2002; AGARWAL et al. 2005).

The laboratory methods used to determine antioxidative enzymes in reproductive medicine

are not fully standardized. Moreover, differences in methodology exist between laboratories.

Therefore, diverse levels of antioxidants in bovine seminal plasma have been reported in the

past (BILODEAU et al. 2000). On the other hand, there are some convenient methods to

predict total antioxidant capacity of seminal plasma using commercially available assays. For

example, an assay has been developed for the determination of total antioxidative capacity

Page 32: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

22

(TAC) in human using a chemiluminescence method (KOLETTIS et al. 1999;

WATERHOUSE et al. 2006). The TAC is an indicator for the total available antioxidant

protection in the seminal plasma and represents an integrated parameter rather than the simple

sum of measurable antioxidants. The TAC assay is a sensitive and widely used method to

measure antioxidant activity of body fluids (SHARMA et al. 1999). A negative correlation

between TAC of seminal plasma and infertility could be observed in men (SMITH et al. 1979;

KOLETTIS et al. 1999).

The aim of the present study was to establish the assay for the determination of total

antioxidative capacity in seminal plasma of bulls. By using this assay, variabilities in TAC

between and within animals were calculated. In addition, possible correlations between levels

of TAC and levels of specific antioxidants in seminal plasma and parameters of sperm quality

were verified.

3.1.3 Materials and methods

3.1.3.1 Chemicals

Chemicals were obtained from Sigma-Aldrich Co (Steinheim, Germany), unless otherwise

indicated.

3.1.3.2 Semen collection, dilution and freezing

Eight consecutive ejaculates were collected twice-weekly using an artificial vagina from 9

Holstein-Friesian bulls (3.5 ± 0.8 yrs) of an AI station located in the northern part of Germany

(Masterrind GmbH, Verden). Concentration (Z2™ COULTER COUNTER® Cell and Par-

ticle Counter, Beckman Coulter GmbH, Krefeld, Germany), volume and total sperm number

of each ejaculate were determined directly after collection. A portion of each ejaculate (with a

total sperm number of 450x106 sperm) was diluted to a final concentration of 60x106

sperms/ml using a Tris-egg yolk based extender (DEHNING 2008) and the remaining part

was kept undiluted for the separation of seminal plasma. After dilution of ejaculates at 20 °C,

they were packaged in 30 French straws (0.25-ml). Ten straws were taken for analysis of

sperm quality before cooling and after cryopreservation. The remaining twenty straws were

slowly cooled to 5 °C over a period of 180 min and frozen to -110 °C within 390 seconds on

Page 33: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

23

racks in a freezer (Model K, Hede Nielsen, Horsens, Denmark). Frozen samples were placed

directly into liquid nitrogen and stored at least 24 hours until analysis.

3.1.3.3 Handling of seminal plasma

Five mililiters of each ejaculate were centrifuged at 3000 g for 10 min at 4 oC and the

supernatant was frozen and stored at -20 °C at least 24 hours until analysis. Samples of

seminal plasma were measured within 6 months. Before measurement, frozen samples of

seminal plasma were thawed at room temperature and diluted 100-fold with phosphate

buffered solution (PBS; 50 mM/l, pH 7.4) for the assessment of total antioxidant capacity

(TAC) and GPx activity and 1000-fold for the determination of superoxide dismutase (SOD)

levels.

3.1.3.4 Antioxidant assays

Total antioxidant capacity

Total antioxidant capacity of seminal plasma was measured using an enhanced chemilumi-

nescence assay according to KOLLETTIS et al. (1999) which was modified for use in an

automated 96-well microplate reader (Genios Pro-Basic W/O FP, Tecan AG, Switzerland).

The principle of this test is based on the suppression of light emission created by the oxidation

of the chemiluminescence substrate luminol by antioxidants. The recovery of the initial

chemiluminescence in samples was compared with Trolox (6-hydroxyl-2,5,7,8 tetrame-

thylchroman-2-carboxylic acid) as a control, which is a water-soluble tocopherol analogue.

Luminol (5-amino-2.3, -dihydro-1.4-phthalazinedione) stock solution (3.1 mM/l dissolved in

dimethyl sulfoxide (DMSO)) and para-iodophenol (40 µM/l dissolved in DMSO) stock

solution were prepared for signal reagent and stored at room temperature. The stock solutions

were protected from light. H2O2 (8.8 M) was stored at 4 oC until analysis. Horse radish

peroxidase (peroxidase type VI-A from horse radish) with 1% bovine serum albumin (BSA)

was prepared as 100 U/ml aliquots and stored at -20 oC. It was thawed and diluted 1:30 in

PBS before measurements. Signal reagent was prepared by adding 110 µl Luminol, 10 µl

para-iodophenol and 30 µl H2O2 (8.8 mM/l) to Tris buffer (0.1 M, pH 8.0). All procedures

were carried out at room temperature unless otherwise indicated. The trolox solution was

Page 34: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

24

prepared as 1 mM aliquots in PBS and stored at -20 °C until analysis. It was thawed before

measurement and diluted further with PBS to concentrations of 3, 6, 9, 12, 15 and 25 µM.

Instrumentation and automated measurement of TAC, SOD and GPx

The TAC assay was modified for use in an automated 96-well microplate reader and was

performed via a fully automatic multi pipetting system (Tecan Genesis AWS 200/8, Tecan

AG, Switzerland). The multi pipetting system was combined with a microplate reader via a

software (Gemini, Version 4.2.17.304, Tecan AG, Switzerland). This system automates the

pipetting and has advantages of accurate estimation time between pipetting and measuring,

and of rapid sample evaluation.

In the kinetic mode of the microplate reader, 30 µl horse radish peroxidase (HRP) and 30 µl

signal reagent were added to 230 µl of PBS in a disposable microplate (Greiner Bio-One,

Frickenhausen, Germany). The microplate was measured 240 seconds in order to equilibrate

to the desired level of chemiluminescence output of 50.000 relative chemiluminescence units

(RLU).

After the equilibration measurement, 10 µl of diluted seminal plasma was added to the signal

reagent and chemiluminescence was measured. Ten microliters of Trolox were added simul-

taneously as a standard solution at concentrations between 3 to 75 µM for the calibration of

TAC.

The pipetting was conducted with 4 needles of the robotic system. The needles were always

washed after one pipetting. Therefore, there was a time difference of 24 seconds between each

4 wells of disposable microplate. Since the suppression of chemiluminescence started imme-

diately after the pipetting of samples or trolox, this time difference was calculated for each of

the 4 wells and added to the recovery time of chemiluminescence separately. Results were

expressed in µM of Trolox equivalents.

Superoxide dismutase (SOD) assay

The SOD-like activity of seminal plasma was determined as described by EWING and

JANERO (1995). The assay based on spectrophotometric assessment of O2.- mediated nitro

blue tetrazolium (NBT) reduction. Nicotinamin dinucleotid (NADH) and phenazine

methosulfate (PMS) were utilized to generate O2.- which react with NBT to yield NBT-

Page 35: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

25

formazan, a colored, water insoluble product. The SOD activity was then measured by

determining the degree of inhibition of NBT reduction (i.e reduction of NBT-formazan

production). One unit of SOD inhibits NBT reduction by 50 % of maximum inhibition under

the conditions of the assay.

All pipetting processes and measurements of microplates were performed with the automated

pipetting system as explained above. For this assay, a working solution in PBS containing

0.1 mM ethylene diamin tetra acetic acid (EDTA), 62 µM NBT (AppliChem, Darmstadt,

Germany), 78 µM NADH was prepared immediately before usage. The 1000-fold diluted

seminal plasma was pipetted into a 96-well-microplate (Sarstedt, Nümbrecht, Germany)

containing 200 µl working solution. A standard curve was constructed using SOD (SOD from

bovine liver, 4800 U/mg).

The reaction was initiated by adding 25 µl PMS solution (33 µM PMS, prepared in PBS).

Addition of PMS was carried out in the microplate reader. Change of the probe without any

sample solution was used as a blank control. The absorbance was measured at 560 nm. The

concentration of solutions in the microplate consisted out of 50 mM PBS containing 0.1 mM

ethylene diamin tetra acetic acid (EDTA), 50 µM NBT, 78 µM NADH, and 3.3 µM PMS

(final concentrations in 250 µl total volume).

Glutathione peroxidase (GPx) assay

Total GPx activity was determined by using an indirect coupled method of GUNZLER and

FLOHE (, 1985 #32). The method was modified for the use in an automated pipetting system.

The assay mixture contained 150 µl potassium phosphate buffer (0.1 M, pH 7.0; 1 mM

EDTA), 25 µl sample, 25 µl glutathione reductase (GR; 2.4 U/ml in 0.1 M PBS pH 7.0) and

Glutathione (GSH; 10 mM in aqua bidest). This mixture was pre-incubated at 37° C for 10

min. Twenty five microliters of nicotinamide adenine dinucleotide phosphate (NADPH;

1.5 mM in 0.1 % NaHCO3 solution, AppliChem, Darmstadt, Germany) were added to the

mixture. The hydroperoxide-independent NADPH oxidation was monitored during 3 min by

the microplate reader at 340 nm. Thereafter, 25 µl t-butyl hydroperoxide (TBHP; 12 mM) was

added. The change in absorbance of the reaction mixture was determined during 5 min at 340

min. The oxidation of NADPH to NADP+ was accompanied by a decrease in absorbance. The

rate of the decrease in absorbance is directly proportional to GPx activity in the sample. Units

Page 36: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

26

of enzyme activity were calculated using the extinction coefficient of 6.22 mM-1 cm-1 for

NADPH.

Determination of protein concentrations

The total protein content of the extracts was determined by using the Bradford assay which

was conducted by the above mentioned robotic pipetting system as well (BRADFORD 1976).

The protein concentrations were used for the determination of the specific activities of SOD

and GPx enzymes.

Measurements of Intra- and Inter-assay Variations:

Intra-assay variation (replications of the same sample on the same day): TAC, GPx and SOD

assays were run 4 times with the same sample originating from one individual ejaculate.

Inter-assay variation (same sample observed on different days): Inter-assay variability was

evaluated by measuring TAC, GPx and SOD from aliquots of the same sample on 5 separate

days

3.1.3.5 Flow cytometric analyses

Flow cytometry was performed with an Epics XL-MLC flow cytometer (Beckman Coulter,

Fullerton, California, USA). Data were analyzed using EXPO32 ADC XL 4 Color™ software

(Beckman Coulter, Fullerton, California, USA). All measurements for plasma membrane

integrity, acrosomal integrity and LPO were done before cooling and immediately after

thawing. LPO was additionally evaluated after 3 h incubation at 37 °C. Sperm DNA integrity

was quantified by using the Sperm chromatin structure assay (SCSA™) on cryopreserved

samples.

Cryopreserved sperm were thawed by placing the straws in a 37 °C water bath for 30 sec.

Sperm samples were diluted to concetration of 5x106 sperm/ml with Tyrode`s medium (100

mM NaCl, 3.1 mM KCl, 2.0 mM CaCl2, 0.4 mM MgCl2, 0.3 mM Na2HPO4, 1 mM Na-

pyruvate, 21.6 mM Na-lactate, 24.9 mM NaHCO3, 10 mM Hepes, 0.05 g/l penicillin, 0.5 g/l

PVA, 0.05 g/l PVP; pH: 7.4; 320 mOsm) for analyses by using FITC-PNA/PI and BODIPY

assays (ASHWORTH et al. 1995).

Page 37: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

27

The green fluorescence emissions of FITC-PNA, C-11 BODIPY581/591 (BP) and acridine

orange (AO) were collected by a 530/30 nm filter (FL1) and the red fluorescence of AO and

PI by a 650 nm long pass filter (FL3). After FITC-PNA/PI and BP measurements, the

collected data for 10.000 events were stored as list mode files and analyzed with EXPO 32

Analysis™ software. Data handling for SCSA™ was performed with the Data Analysis

Software DAS Version 4.19, Germany (BEISKER 1994).

Plasma membrane integrity and acrosomal integrity

FITC-PNA (fluorescein isothiocyanate (FITC)-conjugated peanut agglutinin) / PI (propidium

iodid) dual-staining was used to distinguish the sperm according to integrities of plasma

membranes and acrosomes as described by FISCHER et al. (2010).

Five microliters of FITC-PNA (100 µg/ml) and 3 µl PI (2.99 mM) were added to 492 µl of

diluted sperm suspension. This procedure was carried out for sperm samples before (b) and

after (a) cryopreservation. Sperm samples were incubated at 37 °C for 15 min and remixed

just before measurement. Acrosome-damaged sperm (AD) and PMI were analysed after

nonsperm events were gated out of analyses as determined on forward and sideward scatter

properties.

Lipid peroxidation (LPO)

Lipid peroxidation was evaluated on diluted sperm before cooling and on thawed sperm using

C11-BODIPY581/591 (4,4-Difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4adiaza-s-inda-cene-

3-undecanoic acid) as a fluorescent lipid probe (NEILD et al. 2005). C11-BODIPY581/591

(Mobitec GmbH, Göttingen, Germany) contains a fatty acid analogue. This lipophilic probe

incorporates into the plasma membranes and its fluorescence shifts irreversibly from red to

green when peroxidized by ROS (NEILD et al. 2005; AITKEN et al. 2007).

Bodipy was added to the sperm suspension at a final concentration of 5 µM. PI was added to

sperm suspensions (at a final concentration of 29.9 µM) 15 min prior to being analyzed by

using flow cytometry. This procedure was carried out before cryopreservation (BPb) and 0h

(BP0ha) as well as 3h after thawing (BP3ha). At all these time points, aliquots of sperm

suspensions were treated with t-butyl hydroperoxide (TBHP; 100 mM) to induce LPO (s).

Page 38: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

28

Thereafter, sperm samples were mixed and incubated at 37 °C for 15 min and remixed just

before measurement.

Sperm chromatin structure assay (SCSA)

The percentage of sperm showing a high degree of DFI-values and the standard deviation of

DFI (SD-DFI) were determined by SCSA as described by EVENSON and JOST (2000).

Thawed sperm samples were diluted to concentration of 2x106 sperm/ml with TNE buffer (pH

7.4, 0.01 M Tris-HCl, 0.15 M NaCl, 1 mM EDTA). The sperm suspension (200 ml) was

treated with 400 ml acid-detergent solution (pH 1.2, 0.08 N HCl, 0.15 M NaCl, 0.1% Triton

X-100) for 30 s, and then stained with 1.2 ml (6 mg/L) purified AO in a phosphate–citrate

buffer (0.2 M Na2HPO4, 0.1 M citric acid, 0.15 M NaCl, 1 mM EDTA, pH 6.0). Samples

were examined after 3 min. incubation. Each sample was examined twice and mean values

were used for further analyses.

3.1.3.6 Statistical analysis

Statistical analyses were carried out using the software packages StatView 5.0 and SAS (SAS

Institute Inc., Cary, NC, USA). Normal distribution of data was proven by Kolmogorov-

Smirnov test. Values of antioxidant enzymes and sperm quality parameters were expressed as

means±standard deviations (SD). The coefficents of variation (CV = standard

deviation/mean × 100) for antioxidant and sperm quality parameters were calculated from all

72 ejaculates. Variance component estimates were performed for GPx, SOD, TAC, PMI, AD

and BP values.

Pearson`s correlation coefficients were used to compare different antioxidants with each other

and to relate mean values of each antioxidant parameter for each bull with corresponding

mean value of sperm quality parameter. P-values ≤ 0.05 were considered as significant.

3.1.4 Results

3.1.4.1 Reproducibility of TAC-, SOD- and GPx assays

The intra-assay coefficients of variation for the TAC-, SOD- and GPx assays were 5.0 %,

3.5 % and 6.2 %, respectively. The inter-assay coefficients of variation for the TAC-,

SOD- and GPx assays were 8.3 %, 3.6 % and 8.3 %, respectively.

Page 39: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

29

3.1.4.2 TAC, SOD and GPx levels in seminal plasma

The TAC level calculated from all 72 seminal plasma samples of 9 bulls was 390±191

µmol/L Trolox equivalents. The levels of TAC ranged from 90 µmol/L to 843 µmol/L Trolox

equivalents with a CV of 49 %. The total SOD activity of all samples was 8032±1242 U/ml

and ranged from 5042 U/ml to 10860 U/ml with a CV of 16 %. The level of GPx activity was

27±12 nmol NADPH oxidized/min/mg of protein and ranged from 12 to 57 nmol NADPH

oxidized/min/mg of protein with a CV of 44 % (Table 2-1).

Table 2-1: Glutathione peroxidase (GPx)-acitivity, superoxide dismutase (SOD)-like activity

and total antioxidant capacity (TAC) in bovine seminal plasma. Values are means±SD and

were calculated from 8 consecutive seminal plasma samples of 9 bulls.

The factor bull (P < 0.0001), but not the factor ejaculate (P > 0.05) affected TAC-, SOD- and

GPx values significantly. The relative effects of the factor bull on TAC, SOD, GPx values

Bull GPx activity

[nmol NADPH

oxidized/min/mg of protein]

SOD-like

activity [U/ml]

TAC [Trolox

equivalents

µmol/L]

1 17.11±1.95 9117±156 239.2±39.1

2 13.86±1.40 9314±128 224.7±21.0

3 30.59±4.22 8652±593 659.8±98.4

4 21.90±1.96 9166±1076 509.2±26.3

5 23.55±2.28 7407±671 118.5±14.5

6 48.13±4.56 7110±844 380.2±71.0

7 23.29±3.07 7944±380 650.7±139.2

8 21.48±1.49 7833±357 386.0±29.2

9 43.93±10.03 5744±259 339.2±106.8

All bulls 27.09±11.72 8032±1173 389.7±187.6

Page 40: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

30

were higher than 80 %, while the factor ejaculate contributed not more than 3 % to the total

variability of TAC, SOD and GPx values (Table 2-2).

Table 2-2: Variance component estimates for the effects of the random factors, bull,

ejaculate and other factors on glutathione peroxoidase (GPx) activity, superoxide

dismutase (SOD)-like activity and total antioxidant capacity (TAC) in bovine seminal

plasma.

3.1.4.3 Volume, sperm concentration and total sperm number of ejaculates

The 72 ejaculates showed a volume of 7.5 ± 1.8 ml (range: 3.5 to 11.5 ml; CV=25 %) and a

sperm concentration of 1.5 ± 0.4 x 109 ml-1 (range: 0.9 to 2.6 x 109 ml-1; CV=24 %) (Table

2-3). CV values from individual bulls ranged for volume from 8 % to 32 % and for

concentration from 10 to 28 %. Total sperm number of all studied samples was 11.1±4.0

with a CV of 36 % (range: 5.5 to 20.6 x 109). The CV of total sperm number of bulls ranged

from 21 % to 41 %.

Negative correlations were observed between sperm concentration and BPb (r=-0.75;

P ≤ 0.05), BP0ha (r=-0.81; P ≤ 0.01) and BP3ha (r=-0.68; P ≤ 0.05). No other correlations

(P > 0.05) between sperm concentration, ejaculate volume, total sperm number and sperm

parameters PMI, AD, BP, DFI and SD-DFI were detected.

Source of Variation Bull Ejaculate (bull) Other factors

GPx activity 88 % 2 % 10 %

SOD-like activity 80 % 3 % 17 %

TAC 86 % 2 % 12 %

Page 41: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

31

Table 2-3: Ejaculate volume, concentration, plasma membrane integrity (PMI), acrosomal damage (AD) of bovine sperm samples.

Measurements of PMI and AD were performed before cryopreservation (b) and immediately (0h) and three hours (3h) after (a)

thawing. Values are means±SD from 8 consecutive ejaculates of 9 bulls except for DNA fragmentation index and standard deviation

of DNA fragmentation index (SD-DFI) values. The values of %DFI and SD-DFI were determined from 4 cryopreserved ejaculates

of 9 bulls. CV = coefficient of variation.

Bull

Sperm

Concen.

[x109 ml-1]

Ejaculate

Volume [ml]

Total sperm

number

[109/mL]

PMIb [%] PMI0ha [%] ADb [%] AD0ha [%] %DFI [%] SD-DFI

1 1.0±0.2 7.5±0.6 7.9±1.8 86.5±3.2 45.0±11.7 5.2±1.6 32.4±9.1 1.7±0.5 15.7±1.5

2 1.2±0.3 9.6±1.5 12.0±3.5 79.0±9.0 32.1±11.7 8.9±5.0 42.7±11.5 2.2±0.8 13.9±0.9

3 1.6±0.4 6.8±1.4 11.1±4.5 85.3±3.4 30.3±7.8 4.2±0.9 33.6±12.3 1.4±0.2 15.0±0.3

4 1.6±0.3 9.3±1.4 14.9±3.6 78.5±5.4 25.6±18.8 9.0±2.6 50.4±20.2 3.1±0.6 14.8±1.6

5 1.5±0.3 8.3±0.7 12.5±2.7 84.1±5.8 27.0±10.6 6.4±2.5 42.0±9.8 2.4±0.6 17.0±1.6

6 1.7±0.4 6.2±1.1 11.0±4.0 79.9±4.9 30.5±16.6 6.3±2.1 42.2±18.4 2.1±0.2 19.4±1.9

7 1.4±0.4 5.9±1.9 7.8±2.3 68.5±8.5 22.3±9.6 7.2±1.1 53.9±9.7 2.3±0.8 16.3±1.3

8 1.4±0.3 7.2±1.9 10.5±4.2 79.6±7.5 33.7±11.4 14.3±4.3 45.7±10.2 2.3±0.6 15.0±2.0

9 1.7±0.2 7.1±2.1 12.3±4.4 80.6±5.4 27.5±12.0 8.1±3.0 37.2±11.3 1.1±0.5 15.2±3.1

CV 24.7 % 24.3 % 35.7% 9.6 % 43.2 % 51.0 % 33.6 % 37.9 % 13.2 %

All bulls 1.5±0.4 7.5±1.8 11.1±4.0 80.1±5.3 30.3±6.4 7.7±3.0 42.1±7.3 2.1±0.6 15.8±1.6

Page 42: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

32

3.1.4.4 Sperm quality

The PMIb ranged from 50.9 % to 91.8 %, PMI0ha from 4.9 % to 64.5 %, ADb differed

between 2.4 % and 18.6 % and AD0ha between 16.9 % and 90.1 %. The %DFI0ha ranged

from 0.4 % to 3.7 % and the SD-DFI was 15.7±2.1 (range: 11.6 to 21.5). The BPb differed

between 6.8 and 18.1, and BP0ha between 3.8 and 60.5 (Table 2-4).

Table 2-4: Lipid peroxideation of sperm measured by C11-BODIPY581/591 (BP) quantified

by mean fluorescence intensity before (b), immediately (0h) and three hours (3h) after (a)

cryopreservation without or with stimulation (s) of lipid peroxidation by addition of t-butyl

hydroperoxide. Values are means±SD from 8 consecutive ejaculates of 9 bulls. CV =

coefficient of variation.

Before cryopreservation, the effects of the factor bull on PMI and AD were higher

compared to the effects of the ejaculate and other factors. After the cryopreservation

Bull BPb BPbs BP0ha BP0has BP3ha BP3has

1 20.6±17.4 15.0±3.7 14.0±2.3 14.8±0.7 26.9±13.1 38.3±7.6

2 14.2±5.5 17.7±7.2 11.9±2.3 14.0±1.0 24.1±6.3 37.2±9.3

3 12.8±5.3 16.7±6.7 10.4±2.4 12.3±1.4 22.0±5.9 35.9±10.7

4 13.2±5.2 17.0±7.3 10.6±2.5 13.1±0.9 21.7±6.5 31.2±10.9

5 11.7±5.6 15.0±7.4 9.8±2.6 14.0±0.9 16.8±2.2 30.7±9.3

6 12.8±4.9 16.2±7.1 9.6±2.0 13.9±1.3 17.3±2.2 35.9±6.2

7 12.4±4.0 15.6±6.7 9.9±2.2 12.6±1.4 17.9±2.5 31.4±6.5

8 13.2±5.3 15.5±4.9 9.3±1.2 13.3±1.2 17.7±3.3 30.6±8.0

9 12.8±5.2 15.0±2.9 9.1±1.1 13.1±1.3 17.4±2.6 35.0±9.7

CV 55.1 % 7.1 % 23.6 % 9.8 % 31.5 % 25.7 %

All bulls 12.9±2.7 16.1±1.0 10.1±1.5 13.3±0.8 19.4±3.6 33.5±3.0

Page 43: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

33

variability in PMI- and AD-values were mainly based on other factors, while the effects of

factor bull decreased. The effects of the factor ejaculate were nearly the same before and

after cryopreservation.

Before cryopreservation, the effect of the factor bull on variation in BP values was lower

than the factor ejaculate and other factors (Table 2-5). Similarly to PMI and AD, the total

sum of effects of factors ejaculate and other factors on BP values were always greater than

the effect of the factor bull after cryopreservation.

Table 2-5: Variance component estimates for the effect of the random factors bull,

ejaculate and other factors on plasma membrane integrity (PMI), acrosomal damage AD,

lipid peroxidation of sperm measured by C11-BODIPY581/591 (BP) before (b) and

immediately (0h) as well as three hours (3h) after (a) cryopreservation without and with

stimulation (s) of lipid peroxidation with t-butyl hydroperoxide in bovine sperm.

Source of

Variation

Bull Ejaculate

(bull)

Other

factors

PMIb 39.0 % 24.9 % 36.1 %

PMI0ha 12.4 % 20.1 % 67.5 %

ADb 48.2 % 12.2 % 39.6 %

AD0ha 15.1 % 15.7 % 69.2 %

BPb 6.7 % 54.7 % 38.6 %

BPbs 0.0 % 67.6 % 32.4 %

BP0ha 31.6 % 41.7 % 26.7 %

BP0has 26.7 % 18.0 % 55.3 %

BP3ha 22.8 % 15.4 % 61.8 %

BP3has 5.2 % 53.1 % 41.7 %

Page 44: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

34

3.1.4.5 Relationships between antioxidant levels and between antioxidant levels and

sperm quality

A negative correlation (r=-0.76; P ≤ 0.05) could be observed between SOD and GPx, but

no relationships (P > 0.05) between all other antioxidants.

Sperm concentration was positively correlated with GPx (r=0.78; P ≤ 0.05) in seminal

plasma. TAC was negatively related with BP0has (r=-0.85; P ≤ 0.01). There was a positive

correlation between SOD and BP0ha (r=0.71; P ≤ 0.05) and a positive relationship between

SOD and BP3ha (r=0.80; P ≤ 0.05). No correlations (P > 0.05) between all other antioxi-

dants and sperm parameters PMI, AD, DFI and SD-DFI, respectively, were detected.

3.1.5 Discussion

In the present study, an assay to measure total antioxidant capacity (TAC) of bovine seminal

plasma was established. Using the robotic pipetting system, measurements of TAC, as well as

GPx and SOD, were highly reproducible, with intra- and inter-assay CV < 10 %. In only few

studies reproducibility of antioxidant assays were investigated with interassay CVs of 4.7 %

for GPx in bovine seminal plasma (SMITH et al. 1979) and 31% for SOD-like activity

(BALL et al. 2000) in equine seminal plasma. In human seminal plasma, intra- and inter-

assay CV of TAC using enhanced chemiluminescence method were 5.0 and 13 %,

respectively (SALEH et al. 2001).

Levels of TAC, GPx and SOD varied among bulls with no significant variations between

ejaculates within bulls. KELSO et al. (1997a) noticed lower GPx and SOD activities in older

bulls ( >9 years old) compared to bulls with a middle age (5-6 years old) and young bulls (2-3

years old). As there was only a small range of the age of the bulls investigated in the present

study, there must be other factors responsible for the individual differences in these

antioxidants. It was shown that differences in antioxidant levels of semen can be under

genetic control (FOOTE and HARE 2000; MAIORINO et al. 2003). MAIORINO et al.

(2003) observed high variabilities of the sequences of GPx-4 genes in both fertile and infertile

men. As there are also differences in susceptibility of cryopreserved sperm to plasma

membrane damage between bulls (BOLLWEIN et al. 2008), differences in antioxidant levels

of seminal plasma could be responsible for this phenomenon.

Page 45: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

35

GPx activity detected in bovine semen originates from the seminal plasma and not from

spermatozoa (BROWN et al. 1977; BILODEAU et al. 2000). We measured the activity of

seleno-dependent GPx using specific substrate TBHP. SLAWETA et al (1988) has used

hydrogen peroxide as a substrate for seleno-dependent GPx and found two-fold higher GPx

activity compared to our results. BILODEAU et al. (2000) determined both seleno-dependent

GPx and total GPx activity (using cumene hydroperoxide as specific substrate). Our results

were less than those reported by BILODEAU et al. (2000) that used TBHP as specific

substrate (27±12 vs 116±8 nmoles NADPH oxidized/min/mg). However, the age of studied

bulls was not mentioned by the latter authors. KELSO et al. (1997b) reported that levels of

total GPx activity (determined using cumene hydroperoxide as a substrate) ranged between

5.4 and 17.6 µmoles NADPH oxidized min-1/ml and the levels decreased with the age of the

bulls. It has been reported that the total GPx activity of the seminal plasma contained one

third (SLAWETA et al. 1988) to half (BILODEAU et al. 2000) of seleno-dependent GPx

activity. Therefore, we conclude that the levels of seleno-dependent GPx reported in our study

are similar with those which reported by other authors (SLAWETA et al. 1988; KELSO et al.

1997b).

Sperm are highly susceptible to oxidative substances such as H2O2, O2.- and HO. because of

the high content of polyunsaturated fatty acids in their plasma membranes (SIKKA et al.

1995; AITKEN and BAKER 2004). It has been shown that sperm lipid peroxidation is able to

cause disturbances in sperm function (JONES et al. 1979; AITKEN and CLARKSON 1987;

AITKEN et al. 1989). KASIMANICKAM et al. (2007) has recently reported that lipid

peroxidation of sperm in bulls was not correlated with levels of SOD and GPx in sperm. In

contrast, we found significant correlations between levels of seminal plasma antioxidants

(TAC and SOD) and LPO after thawing. This result indicates that antioxidants of seminal

plasma are utilized after excessive generation of ROS after thawing of bull sperm. Therefore,

we inferred that determination of antioxidants in bull seminal plasma might be a more

predictive tool for the evaluation of oxidative stress than determination of antioxidants in

sperm. For instance in human seminal plasma, low levels of antioxidants have been found in

infertile men by using the TAC assay (SMITH et al. 1979; KOLETTIS et al. 1999).

We noticed that after cyropreservation the effects of the random factor bull on the parameters

PMI and AD decreased, while the effects of the residual factors increased (Table 2-5). This

Page 46: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

36

phenomenon could be explained by the stress factors occurring during and after the

cryopreservation process (HAMMERSTEDT et al. 1990; ASHWORTH et al. 1995;

WATSON 2000; BALL 2008). For example, the dilution of the ejaculates reduces the

concentration of seminal plasma antioxidants. Previous studies (GARNER et al. 1997;

GARNER et al. 2001) showed that the volume and sperm concentration of the ejaculates and

the final concentration of the seminal plasma in the extended semen play critial roles in

plasma membran integrity after thawing of the cryopreserved sperm. As there were

differences in the detrimental effect of dilution of ejaculates between bulls GARNER et al.

(2001) supposed an effect of the source of seminal plasma.

In conclusion, the results show that the automated chemiluminescence TAC assay can be used

to measure the antioxidant levels of bovine seminal plasma. The total antioxidative capacity is

characteristic for the individual bulls and negatively related with lipid peroxidation.

Page 47: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

37

3.2 Effects of feeding omega-3-fatty acids on sperm quality of Holstein Friesian bulls

before and after cryopreservation: Effects on seminal plasma

3.2.1 Abstract

The aim of the present study was to study the effects of feeding alpha-linolenic (ALA) acid on

the antioxidative capacity of seminal plasma, fatty acid composition and quality of bovine

sperm. After semen was collected from 17 Holstein Friesian bulls twice weekly for 4 weeks,

beside the basal ration, nine bulls (ALA bulls; age: 3.2±1 yrs) were additionally supplemented

with 800 g rumen-resistant linseed oil (with a content of 50 % linolenic acid) and eight bulls

additionally fed with 400 g palmitic acid (PA bulls; age: 3.7±0.8 yrs). Both fat suppleme-

ntations were offered for 12 weeks and semen was collected like before supplementation.

Volume, sperm concentration and total sperm number of each ejaculate were examined. The

sperm quality was evaluated by flow cytometric assays for plasma membrane integrity (PMI)

and acrosomal damage (AD) before and after cryopreservation. Fatty acid content of sperm

was determined using gas chromatography in shock frozen sperm before and after fat

supplementation. Total antioxidant capacity (TAC), glutathione peroxidase (GPx) and

superoxide dismutase (SOD) activity were determined in seminal plasma. Volume, sperm

concentration and total sperm number of each ejaculate did not differ (P > 0.05) between

ALA- and PA bulls during the experimental period. Feeding ALA increased (P < 0.05) the

docosahexaenoic acid content in bulls whereas the DHA content in PA bulls did not

(P > 0.05) change. This increase of DHA in ALA bulls did not (P > 0.05) affect the levels of

TAC, GPx and SOD in seminal plasma. Before cryopreservation PMI- and AD values were

not (P > 0.05) influenced by the additional feeding of fatty acids, neither by PA nor by ALA.

PMI increased and AD decreased after cryopreservation in ALA bulls as well as in PA bulls

during the experiment period (P < 0.005). The results of this study show that the feeding of

neither saturated nor polyunsaturated fatty acids affect the antioxidant levels in seminal

plasma. Both saturated as well as polyunsaturated fatty acids had positive effects on quality of

cryopreserved bovine sperm, although the content of docosahexaenoic acid in sperm

membranes increased only in ALA bulls.

Page 48: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

38

3.2.2 Introduction

The integrity of sperm membrane is affected through cryopreservation (HAMMERSTEDT et

al. 1990; WATSON 1995). After freezing and thawing, the proportion of PUFA in the plasma

membrane of boar sperm decreased significantly due to LPO (CEROLINI et al. 2001). The

lipid composition of the plasma membrane is also a major determinant of motility and

freezability of sperm among species (HAMMERSTEDT et al. 1990; PARKS and LYNCH

1992; HAMMERSTEDT 1993). Furthermore, it was noticed that lower contents of C20 and

C22 PUFAs in the sperm of older bulls (KELSO et al. 1997b) and chickens (KELSO et al.

1996) were related to a decrease in the ability to fertilize oocytes. The decrease in PUFA

content was related to decreased antioxidant levels (GPx and SOD) in seminal plasma of

aging bulls during reproductive period (KELSO et al. 1997b).

Somatic cells contain several antioxidants, GPx, SOD and catalase in their cytoplasm. As

sperm are devoid of most of this cytoplasm, the main antioxidant source in semen is the

seminal plasma (BILODEAU et al. 2000). For example, it was shown that GPx and SOD in

seminal plasma play important roles in the inhibition of LPO (KELSO et al. 1996). Previous

reports have shown that enzymatic and non-enzymatic antioxidants had positive effects on

sperm freezability (BILODEAU et al. 2001; FERNANDEZ-SANTOS et al. 2007; BANSAL

and BILASPURI 2008).

In bovine sperm, docosahexaenoic acid is the dominant PUFA as in most mammals (NEILL

and MASTERS 1972; POULOS et al. 1973; KELSO et al. 1997b). An important positive

effect of PUFA in sperm function has been attributed to its effect on the fluidity of the plasma

membrane (LENZI et al. 1996). In the last fifteen years, in various feeding experiments DHA

or its precursors have been supplied to change the fatty acid composition of sperm membrane

in order to improve sperm quality and fertility. Several different studies revealed that the fatty

acid profile of sperm membrane can be modified with diet and, thus, improvement in sperm

quality was demonstrated in a variety of livestock species including chicken (KELSO et al.

1997a), turkey (BLESBOIS et al. 2004; ZANIBONI et al. 2006), boar (ROOKE et al. 2001)

and stallion (BRINSKO et al. 2005). However, diets that contain more PUFAs are associated

with impaired antioxidant capacity of animal tissues, blood and semen (SURAI et al. 2000a;

CASTELLINI et al. 2003). After feeding of more PUFA, elevated LPO of sperm and blood

were noticed (SURAI et al. 2000a; CASTELLINI et al. 2003). Therefore, it has been

Page 49: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

39

recommended that the dietary supplementation of PUFAs has to comprise additional

antioxidants (SURAI et al. 2000a; ZANINI et al. 2003; CEROLINI et al. 2005).

A recent study by ADEEL et al. (2009) showed that the feeding of sunflower oil and

sunflower seed (rich in PUFA) improves motility and plasma membrane integrity of post-

thawed buffalo sperm. Until now, however, there is no evidence for the transport of PUFAs

from the diet to spermatozoa and its effect on seminal levels of antioxidants in Holstein

Friesian bulls. Thus, the aim of the present study was to characterize the effects of feeding

alpha-linolenic (ALA) acid on antioxidative capacity of seminal plasma, fatty acid

composition of sperm and quality of sperm in Holstein Friesian bulls.

3.2.3 Material and Methods

3.2.3.1 Bulls

Two consecutive experimental periods (P1 and P2) were carried out with the same fat

supplementations. There were twenty bulls in both experimental periods (18 Holstein Friesian

bulls and 2 Red Holstein bulls). The first experimental period (P1; n=10) was conducted

between August and October 2007 and the second period (P2; n=10) was conducted between

December 2007 and March 2008. The bulls were housed in an AI station (Masterrind GmbH;

Verden, Germany). Two bulls from the first treatment period and one bull from the second

treatment period had to be excluded due to illness. Nine bulls in the ALA group were 3.2±1.0

years and bulls in the PA group were 3.7±0.8 years old.

3.2.3.2 Dietary supplementation of bulls

The bulls in both groups were fed with a basal diet consisting of hay-silage (15 kg/day),

concentrate (2 kg/day; Hansa Landhandel GmbH, Zeven) and 300 g/day of a mineral feed

(MOVIpress KaGiGro, HS HEMO Qualitätsfutter GmbH & Co. KG, Lindhorst).

The basal ration of the ALA group was supplemented with 800 g coated alpha-linolenic acid

per day (net alpha-linolenic acid = 400 g, Noba Vetveredeling B.V., Geesthacht). The fat

supplement contained at least 70 % PUFA (Oleic acid: 10-22 %, Linoleic acid: 12-18 %,

alpha linolenic acid: 56-71 %). The ration of the PA group was supplemented with 400 g

palmitic acid (Bergafat®, Berg und Schmidt GmbH, Hamburg) to achieve the same energy

Page 50: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

40

density for both groups. This supplement was a fractioned palm fat with a high percentage of

palmitic acid (palmitic acid: minimum 75 %, stearic acid minimum 10 %, myristic acid: ca.

1.5 %, oleic acid: ca. 10 %, linoleic acid: ca. 2 %, eicosanoic acid (C20:0): ca. 0.5 %). Both

fat supplements were fed in two equal portions twice a day. After semen was collected from

17 Holstein Friesian bulls twice weekly for 4 weeks, beside the basal ration, both fat

supplementations were offered for 12 weeks.

3.2.3.3 Semen collection, dilution and freezing

Semen was collected twice a week over 16 weeks (4 weeks before the start of the dietary

treatment and 12 after the dietary treatment). Concentration (Beckman Coulter, Krefeld),

volume and total sperm number of each ejaculate were determined directly after collection.

Progressive motility was estimated using microscopy at 37 °C at 200 x magnification

(Olympus model BH2, Hamburg, Germany).

A portion of each ejaculate with a total sperm number of 450x106 was diluted to a final

concentration of 60x106 cells/ml using a Tris-egg yolk based extender (DEHNING 2008).

Five mililiters of each ejaculate was kept undiluted for the separation of seminal plasma.

After the dilution of ejaculates at 20 °C, they were packaged in 30 French straws (0.25-ml).

Ten straws were taken for sperm analyses before cooling and after cryopreservation. Twenty

straws were slowly cooled to 5 °C over a period of 180 min and frozen to -110 °C within 390

seconds on racks in a freezer (Model K,Fa. Hede Nielsen, Horsens, Denmark). Frozen

samples were placed directly into liquid nitrogen and stored at least 24 hours until analysis.

3.2.3.4 Handling of seminal plasma and measurement of TAC, GPx and SOD

Each ejaculate (5 ml) was centrifuged at 3000 x g for 10 minutes at 4°C and the supernatant

was stored at -20 °C at least 24 hours until analysis. Samples of seminal plasma were

measured within 6 months. Before measurement, frozen samples of seminal plasma were

thawed at room temperature and diluted 100-fold with phosphate buffer solution (PBS; 50

mM/l, pH 7.4) and immediately assessed for total antioxidant capacity (TAC) and glutathione

peroxidase (GPx) activity. The samples were diluted further 10-fold with PBS for the

superoxide dismutase (SOD) assay. The measurements of TAC, GPx and SOD were carried

out as previously described (see 3.1.3.4). TAC, GPx and SOD were measured from samples

Page 51: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

41

before feeding (4 weeks) and in the last four weeks of feeding (from 9 to 12 weeks of

feeding).

3.2.3.5 Flow Cytometric analyses

Plasma membrane integrity and acrosomal integrity

Flow cytometric analyses were performed as described in 3.1.3.5. The integrities of the

plasma membrane and the acrosome were evaluated by FITC-PNA / PI assay (FISCHER et

al. 2010). Five microliters of FITC-PNA (100 µg/ml) and 3 µl PI (2.99 mM) were added to

492 µl of diluted sperm suspension in Tyrode`s medium (100 mM NaCl, 3.1 mM KCl, 2.0

mM CaCl2, 0.4 mM MgCl2, 0.3 mM Na2HPO4, 1 mM Na-pyruvate, 21.6 mM Na-lactate, 24.9

mM NaHCO3, 10 mM Hepes, 0.05 g/l penicillin, 0.5 g/l PVA, 0.05 g/l PVP; pH: 7.4; 320

mOsm). This procedure was carried out on extended sperm before and after cryopreservation.

Sperm samples were incubated at 37 °C for 15 min and remixed just before measurement. The

percentages of acrosome-damaged sperm (AD) and sperm with an intact plasma membrane

(PMI) were determined after nonsperm events were gated out of analyses as evaluated on

scatter properties only.

Sperm chromatin structure assay (SCSA)

The percentage of sperm showing a high degree of DNA fragmentation (% DFI) and the

standard deviation of DFI (SD-DFI) were determined by SCSA (see 3.1.3.5) as described by

EVENSON and JOST (2000).

3.2.3.6 Fatty acid extraction and analysis

The investigation of the gas chromatic analysis of sperm fatty acids was carried out by Frauke

Dehning at the Department of Physiological Chemistry (DEHNING 2008). Fatty acid

composition of sperm was determined in shock frozen sperm at trial weeks 1 and 16.

After the collection, the ejaculates were centrifuged (2500 x g, 10 min, 4 °C) to separate

sperm from the seminal plasma. The sperm pellets were stored (nine months) until analysis at

-20 °C.

Page 52: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

42

The extraction of lipids from sperm was performed with chloroform /methanol (1:2, v/v)

according to BLIGH and DYER (1959). After extraction, fatty acids were separated in form

of their methylester derivatives using the method described by LEPAGE and ROY (1986).

The identification of fatty acid methyl esters was performed by gas chromatography on a

capillary column (Zebron ZB-WAX plus; Phenomenex Inc, Torrance, CA, USA) 30 mm x

0.25 mm (0.25 µm film thickness). The separation of fatty acids was carried out using the

following temperature program: 120 °C for 2 min, increase to 190 °C (25 °C/min) and to

250 °C (10 °C/min). The latter temperature was kept for 30 min. Peak values were detected by

flame ionization. The percentage of fatty acids was calculated by comparison of the total fatty

acid peak area with that of the fatty acid standard (heptadecanoic acid).

3.2.3.7 Statistical analysis

The investigations lasted 16 weeks, four weeks before and twelve weeks after the start of the

feeding. For the statistical analyses of time dependent changes and differences between both

animal groups in sperm quality during the study period, for all sperm quality parameters mean

values each out of four weeks were calculated. Levels of antioxidants were investigated

before feeding and last four weeks of feeding. Normal distribution of data was proven by

Kolmogorov-Smirnov test. Values of antioxidants and sperm quality parameters were

expressed as means±standard deviations (SD). Means of percentages of fatty acids from two

ejaculates at trial weeks 1 and 16 ware calculated. One-way analysis of variance (ANOVA)

followed by Fisher's LSD test (least significant difference test) was conducted to investigate

the effects of diets on sperm quality, antioxidant levels and fatty acids compositions.

From the data of the pre-feeding period, pearson`s correlation coefficients were calculated to

compare the mean values of antioxidants in seminal plasma (TAC, GPx and SOD) and the

percentages of fatty acids in sperm membranes. P values ≤ 0.05 were considered as significant

and 0.05 < P ≤0.01 was considered as tendencial.

Statistical analyses were carried out using the software packages StatView 5.0 and SAS (SAS

Institute Inc., Cary, NC, USA).

Page 53: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

43

3.2.4 Results

3.2.4.1 Fatty acid analysis

The investigations of fatty acid composition of sperm and of semen parameters were carried

out by DEHNING (2008). Additionally to the study of DEHNING (2008), correlations

between fatty acids and antioxidants levels in seminal plasma were evaluated in the present

study (Table 3-3).

Before feeding of bulls, DHA was the unique detectable omega-3 fatty acid in the plasma

membrane of sperm with a portion of 40.13% of all fatty acids. The portions of the saturated

fatty acids palmitic acid (C16:0), myristic acid (C14:0) and stearic acid (C18:0) were 22.4 %,

12.1 % and 8.6 %, respectively. Oleic acid (C18:1 n-9) was the only found monounsaturated

fatty acid (6.0 %). Linoleic acid (C18:2 n-6) accounted for 3.5 %. Furthermore, eicosatrienoic

(C20:3 n-6) and ecosadienoic acid (C20:2 n-6) accounted for 3.3 % and 1.1 %, respectively.

3.2.4.2 Dietary effects on sperm quality and fatty acid composition

After feeding with ALA, the DHA level of sperm increased (P < 0.03), but no change

(P > 0.05) occurred in DHA levels after the supplementation of PO. The same (P > 0.05)

alterations in DHA level were detected during both feeding periods, P1 and P2. Therefore,

only the averages of the data of the trials P1 and P2 are shown (Table 3-1). There was a non

significant decrease of palmitic acid in ALA bulls (4 %) and a non significant increase of this

fatty acid in PA bulls (4 %). The feeding of PO led to a higher (P < 0.05) portion of palmitic

acid compared to the supplementation of ALA.

Sperm concentration, ejaculate volume, total sperm number of ejaculate did not change

(P > 0.05) in ALA- and PA bulls during the experimental period. The PMIb values stayed

constant (P < 0.05) during the study period, while PMIa increased (P < 0.005) by 11 % in

ALA bulls and by 9 % in control group during the study period (Table 3-1). There were no

alterations (P > 0.05) in ADb in both groups, while ADa decreased during the study period in

both groups (P < 0.005). The %DFI- and SD-DFI values were not affected (P > 0.05) by the

feeding of PO and ALA.

Page 54: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

44

Table 3-1: Effects of diets containing palmitic acid (PO) or alpha-linolenic acid (ALA) on sperm concentration (concentration), volume

of the ejaculate (volume), total sperm number, plasma membrane integrity (PMI), acrosomal damage (AD), DNA fragmentation index

and standard deviation of DNA fragmentation index (SD-DFI) of bovine sperm samples. Measurements of PMI and AD were

performed before (b) and immediately after thawing (0ha). The %DFI and SD-DFI were determined after thawing of samples. Values

are means±SD from 8 consecutive ejaculates (twice weekly for 4 weeks) of PO (n=8) and ALA (n=9) bulls before (4 weeks) and

during feeding.

PO ALA Diet week Before 1-4 5-8 9-12 Before 1-4 5-8 9-12

Concentration

[109/ml] 1.5±0.3 1.5±0.3 1.5±0.3 1.5±0.3 1.5±0.3 1.4±0.3 1.4±0.3 1.4±0.3

Volume [ml] 7.7±1.8 7.3±1.7 7.9±1.7 7.2±1.7 7.1±1.4 7.4±1.8 7.6±1.5 7.1±1.7

Total sperm

number [109/ml] 11.3±3.5 11.0±3.4 11.8±3.7 10.4±3.3 10.4±2.9 10.2±3.4 10.6±2.7 9.7±3.2

PMIb [%] 83.6±5.0 85.0±4.2 85.3±4.4 84.8±4.4 79.7±8.3 82.6±7.3 83.3±6.8 82.6±7.4

ADb [%] 4.8±2.4 4.2±2.0 4.1±1.5 4.4±2.1 5.8±3.5 4.9±2.9 4.5±2.4 4.8±2.4

PMI0ha [%] 33.0±13.3 44.1±14.9* 42.0±15.0* 44.8±12.0* 28.6±10.5 39.3±13.6* 41.0±11.8* 41.6±13.7*

AD0ha [%] 39.4±16.1 29.1±14.3* 26.6±12.6* 26.3±9.9* 46.5±11.7 33.5±14.4* 28.7±9.6* 31.3±12.9*

%DFI [%] 3.2±1.8 3.9±1.6 3.6±1.9 4.5±1.9 3.7±1.9 3.6±1.7 3.3±1.6 4.6±2.2

SD-DFI 18.1±5.9 18.5±3.5 16.8±4.5 19.2±4.9 18.5±3.5 18.5±3.3 16.7±3.6 17.9±4.1

Values during the feeding period with asterisk (*) differ (P < 0.05) compared to the values before the feeding period.

Page 55: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

45

3.2.4.3 Effect of feeding ALA on antioxidant levels of seminal plasma In both groups the levels of TAC, SOD and GPx did not change (P > 0.05) during the feeding

of PO and ALA (P > 0.05). The values of TAC, SOD and GPx did not differ (P > 0.05)

between PO - and ALA bulls during the study periods (Table 3-2).

Table 3-2: Effects of diets containing palmitic acid (PO) or alpha-linolenic acid (ALA) on

levels of total antioxidant capacity (TAC = µmol/L), glutathione peroxidise (GPx = nmol

NADPH oxidized/min/mg of protein) and superoxide dismutase (SOD = U/ml) in bovine

seminal plasma. Values are means±SD from 8 consecutive ejaculates (twice weekly for 4

weeks) of PO (n=8) and ALA (n=9) bulls before feeding and after 9 weeks (mean of weeks 9-

12) of feeding.

PO ALA Before feeding feeding Before feeding Feeding

TAC 570.0±283.7 503.4±209.2 553.5±194.9 653.4±206.9

GPx 65.5±20.8 65.6±23.3 66.4±16.9 64.4±19.0

SOD 11024.8±733.1 10835.0±810.3 10616.2±1084.1 10769.0±1503.5

3.2.4.4 Correlation between fatty acids and antioxidants

There were negative correlations (P < 0.05) between the values of TAC and percentages of

palmitic (C16:0) and myristic (C14:0) acid (P < 0.05). Levels of SOD in seminal plasma was

in tendency associated (P=0.09) with DHA (C22:6 (n-3)) in the sperm plasma membrane and

GPx was in tendency associated (P=0.06) with C18:2 (n-6). There were no (P > 0.05)

correlations between all other antioxidant levels in seminal plasma and the relative contents of

all other fatty acids in the sperm plasma membrane (Table 3-3).

Page 56: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

46

Table 3-3: Relationships between antioxidants in seminal plasma (TAC = µmol/L, GPx =

nmol NADPH oxidized/min/mg of protein and SOD = U/ml) and relative contents of fatty

acids in plasma membrane of sperm (n=17).

Fatty

acid

C22:6

(n-3)

C22:0

C20:2

C18:2

(n-6)

C18:1

(n-9)

C18:0

C16:0

C14:0

TAC 0.26 -0.42 0.02 -0.37 0.35 0.29 -0.59* -0.56*

GPx 0.04 0.31 0.13 0.47a -0.37 -0.46 0.38 0.27

SOD 0.42a -0.03 0.39 -0.11 -0.11 -0.10 -0.39 -0.36

(*) P < 0.05, (a) 0.05 < P ≤ 0.10

3.2.5 Discussion

In the present study, no alterations in levels of antioxidants in seminal plasma were detected

by feeding of PA or ALA. Therefore, we suppose that amounts of antioxidants in the diet of

bulls are well-balanced. Previous studies have shown that increasing PUFA amounts in the

diet of different species may change antioxidant status of semen (SURAI et al. 2000b;

ROOKE et al. 2001; CASTELLINI et al. 2003; CEROLINI et al. 2005; ZANIBONI et al.

2006). CASTELLINI et al. (2003) reported in rabbit bucks that supplementation of long chain

fatty acis modified the fatty acid profile but concurrently reduced the total antioxidant

capacity of seminal plasma determined by using Oxy-adsorbent spectrofotometric assay. They

found that supplementation of neither vitamin E nor vitamin C restored oxidative stability of

semen in animals showing a rise of oxidative stress after of feeding fatty acids. Improvements

of sperm quality were observed only after adding a combination of both antioxidants, vitamin

E as well as vitamin C to the diet. ZANIBONI et al. (2006) even noticed in turkey fish oil

decreased susceptibility to peroxidation of sperm, but also only by feeding adequate vitamin E

supplementation. These findings, i.e., positive effects of fat supplementations only by

combining it with antioxidants, may be explained by the fact that sperm contain high levels of

PUFA.

Page 57: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

47

The presence of high levels of PUFA requires efficient antioxidant levels to protect sperm

against lipid peroxidation (AITKENand BAKER 2004). In contrast to the above mentioned

studies, there are also reports which showed positive effects of fats on sperm quality without

additional antioxidant supplementation in stallion (BRINSKO et al. 2005) and in chicken

(KELSO et al. 1997a). The reason for this contradictory result may be the fact that in the

different studies various diets were used, which contained different fatty acids. As the various

types of fatty acids show different effects on sperm membranes they require different amounts

of antioxidants (BONGALHARDO et al. 2009). Furthermore, the above mentioned studies

were carried out in different species which show varying antioxidant levels. Bovine seminal

plasma contains higher antioxidant levels compared to equine (BALL 2008) and porcine

seminal plasma (OCHSENDORF and FUCHS 1997).

Antioxidants in seminal plasma play an essential role to maintain oxidative stability (SURAI

et al. 1997; SURAI et al. 2000a; AGARWAL et al. 2005; KASIMANICKAM et al. 2006). In

a recent study comparing antioxidants and fatty acid contents in human sperm, TAVILANI et

al. (2008) found that there is a negative relationship between SOD activity and levels of

palmitic acid in normospermic samples. They showed positive but non significant correlations

between SOD activity and DHA levels in sperm which is in accordance with our results. In

addition, it is known that the ratio of PUFA/saturated fatty acids in human sperm is an

important indicator of normospermic sperm. It was higher than that in asthenozoospermic

sperm (TAVILANI et al. 2006). In our study, there were significant negative correlations

between TAC levels in bull seminal plasma and levels of saturated fatty acids (SFA; palmitic

and myristic acid) of sperm. Phospholipids of mammalian sperm are important substrates for

respiration and particularly palmitic and myristic acid within phospholipids can be oxidized

for energy production (HARTREE and MANN 1961; SCOTT and DAWSON 1968). We

assume that the antioxidants of seminal plasma are not used for the protection of SFA in

sperm membrane.

There are studies on many species including stallion (BRINSKO et al. 2005), human

(CONQUER et al. 2000), fowl (BLESBOIS et al. 2004), boars (ROOKE et al. 2001) and

rabbit (CASTELLINI et al. 2003) showing positive effects of feeding PUFAs on sperm

quality, but until now the mechanism how long chain PUFAs affect sperm quality is not quite

clear (CEROLINI et al. 2005; KELSO 1997a; SURAI 2000b). Our report is the first to show

Page 58: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

48

that the supplementation of ALA increases the DHA content in bull sperm. However, there

was no specific effect of DHA on sperm quality before cryopreservation and after thawing.

This finding is in accordance with those of PAULENZ et al. (1999) who showed in boars that

dietary supplementation of n-3 PUFAs by feeding of cod liver oil increased the DHA in

sperm membranes but did not improve the tolerance to cold shock and freezing. In contrast,

ROOKE et al. (2001) observed an increase of boar sperm quality after feeding tuna oil.

Similarly, BRINSKO et al. (2005) noticed that feeding stallions DHA rich diets would

improve freezeability of sperm. It is noteworthy here to mention that, content of PUFA and

levels of antioxidants differ between species. Bovine semen shows a higher DHA content

(PARKS and LYNCH 1992) and higher GPx (BILODEAU et al. 2000) levels compared to

equine (SAARANEN et al. 1989; BALL et al. 2000) and porcine semen (SAARANEN et al.

1989). The latter two species have higher levels of docosapentaenoic acid [DPA; 20:5 (n-6)]

(PARKS and LYNCH 1992) in sperm and lower GPx levels in seminal plasma compared to

bulls. Such a species difference in content of fatty acids and antioxidants could be a reason for

different effects of PUFA supplementation on sperm quality.

One limitation of our study was the lack of a control group without any fat supplemantation.

On the other hand, we carried out the same fat supplementations at two different times and

achieved the same results. The interesting findings of this study were the positive effects of

both fat sources on post thawing sperm plasma membrane- and acrosomal integrity. Diets

enriched with n-3 or n-6 fatty acids affected sperm production in different species like in

chicken (SURAI et al. 2000b) or in stallion (BRINSKO et al. 2005). Many of them, for

example in stallion (BRINSKO et al. 2005) and boar (ROOKE et al. 2001), resulted in an

improvement of sperm quality (SURAI et al. 2000b; ROOKE et al. 2001). However,

discordant results have been reported (PAULENZ et al. 1999).

In summary, the content of antioxidants in seminal plasma was not affected by the additional

feeding of fatty acids, neither in saturated nor polyunsaturated forms. However, both types of

fatty acids led to an increase of sperm quality after cryopreservation.

Page 59: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

49

4. SUMMARIZING DISCUSSION AND CONLUSIONS

Measurements of TAC, as well as GPx and SOD, were highly reproducible, with intra- and

interassay CV < 10% which are consistent with results of assays reported in other species

(SMITH et al. 1979; BALL et al. 2000; SALEH et al. 2001). Levels of TAC, GPx and SOD

differed significantly among bulls, with no significant variation among ejaculates. It is known

that seminal plasma concentrations of catalase in rabbit (FOOTE and HARE 2000) and of

SOD in stallion (BALL et al. 2000) varied among individual males. FOOTE et al. (2000)

noticed that variations in catalase enzyme among male rabbits are under genetic control.

Furthermore, it has been indicated that the sequences of GPx-4 genes were highly variable in

both fertile and infertile men (MAIORINO et al. 2003). Therefore, we consider that the

variation of antioxidant levels could have genetic reasons.

Sperm are highly susceptible to lipid peroxidation because of their high content of

polyunsaturated fatty acids composition. Recently, it has been reported that lipid peroxidation

of bull sperm was negatively associated with fertility parameters but not with levels of SOD

and GPx in sperm (KASIMANICKAM et al. 2007). In contrast, we found a negative

correlation between TAC levels in seminal plasma and induced LPO of sperm after thawing.

Furthermore, we observed positive correlations between SOD and LPO after thawing. These

findings indicate that seminal plasma antioxidants have protective effects against lipid

peroxidation during the cryopreservation and thawing process.

In the present study, variance components contributing to total variance of bull sperm quality

parameters were estimated. There was a decrease of the effect of the factor bull and an

increase of the residual factors on variabilities of PMI and AD after the cryopreservation

process. It is noteworthy that the cryopreservation process affects the antioxidant enzyme

distribution on sperm (STRADAIOLI et al. 2007; MARTI et al. 2008). In addition, volume

and sperm concentration of ejaculate and seminal plasma concentration in the final dilution

played a critical role concerning the viability of frozen-thawed sperm (GARNER et al. 1997;

GARNER et al. 2001). GARNER et al. (2001) postulated that at higher dilution rates

protective seminal plasma components are lacking, thus contributing to the damage of sperm

during cryopreservation and thawing. In the present study, dilution of ejaculates appears to be

a possible reason for post-thawing increase of residual effect in total variation. Negative

Page 60: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

50

correlations between post-thawing sperm LPO and sperm concentration support our

hypothesis concerning dilution.

The aim of the second part of the study (see 3.2) was to investigate the effects of feeding

alpha-linolenic (ALA) acid (in comparison to palmitic acid; PO) on the antioxidative capacity

of seminal plasma, fatty acid composition and quality of bovine sperm. Supplementations of

ALA and PO did not affect the levels of seminal plasma antioxidants during the experiment.

This result can be attributed to the fact that antioxidants in the diet of bulls were sufficient to

protect sperm from ROS (ROOKE et al. 2001; CASTELLINI et al. 2003).

The intake of PUFA from the diet into the plasma membrane of sperm has been shown for

many species (CONQUER et al. 2000; ROOKE et al. 2001; CASTELLINI et al. 2003;

BLESBOIS et al. 2004; BRINSKO et al. 2005). Our report is the first one demonstrating that

feeding more ALA increases the DHA content in the bull sperm. Nevertheless, the positive

effects of fat supplementation on cryopreserved sperm were seen not only noticed for bulls

fed ALA, but also for the bulls supplemented with PA. Diets enriched with n-3 fatty acids

affected sperm production in different species (BRINSKO et al. 2005; SURAI et al 2000b).

Discordant results about the effects of fatty acids on post-thawing sperm quality have been

reported. BRINSKO et al. (2001) demonstrated that the additional feeding of n-3 fatty acids

improved the freezability of stallion sperm. In contrast, in boar, fish oil addition (3 %) to the

dairy ration of boar increased the DHA content of sperm (from 33 % to 45 %) and increased

total sperm number, but did not alter freezability (CEROLINI et al. 2001). It is noteworthy

that there are species differences in content of fatty acids and levels of antioxidants (POULOS

et al. 1973; MENNELLA and JONES 1980; KANTOLA et al. 1988). These make it difficult

to compare effects of fat supplementation on quality of bovine sperm with other species. We

suggest that both SFA and PUFA may affect the bull sperm quality, because both types of

fatty acids are important for sperm function. Polyunsaturated fatty acids (particularly DHA)

play a major role in reulating sperm membrane fluidity. DHA is also important during

spermatogenesis and epididymal sperm maturation (OLLERO et al. 2000). It is known that

there is a decrease in DHA content of sperm during the maturation. It has been also suggested

that DHA may induce apoptosis during maturation and play a role in the regulation of

spermatogenesis (OLLERO et al. 2000; OLLERO et al. 2001). SFAs in sperm (palmitic and

Page 61: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

51

myristic acid) are important substrates for respiration and can be oxidized for energy

production (HARTREE and MANN 1961; SCOTT and DAWSON 1968).

There was a tendency for a correlation between SOD activity in seminal plasma and DHA

content in sperm (see 3.2) which is in accordance with previous reports (TAVILANI et al.

2008). In addition, we found a significant negative correlation between TAC of seminal

plasma and SFA. This result indicates that seminal plasma antioxidants are not used for the

protection of SFA in sperm membrane.

We conclude that the automated chemiluminescence TAC assay is a suitable method for

determining the antioxidant capacity of bull seminal plasma. The levels of TAC differ among

bulls and the TAC assay gives valuable information about the sensivity of sperm against LPO

after cryopreservation process. Both SFA as well as PUFA had positive effects on quality of

cryopreserved bovine sperm, although the content of DHA in sperm membranes increased

only in ALA bulls. The feeding of neither SFA nor PUFA affected the levels of antioxidants

in seminal plasma.

Page 62: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

52

5. SUMMARY

Oguz Calisici

Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3

fatty acids

The first objective of the present study was to establish an assay to measure total antioxidant

capacity (TAC) of bovine seminal plasma. In addition, relationships between TAC and other

antioxidants in seminal plasma and sperm quality, respectively, were investigated. The second

objective of this study was to investigate the effects of feeding alpha-linolenic (ALA) acid on

the antioxidative capacity of seminal plasma.

In the first part of the study, eight ejaculates were collected twice weekly for 4 weeks from

nine mature Holstein-Friesian bulls. Assays to determine levels of TAC, glutahione

peroxidase (GPx) and superoxide dismutase (SOD) were modified for use in an automated,

96-well microplate reader. Plasma membrane integrity (PMI) and acrosomal damage (AD)

were evaluated by flow cytometry in sperm before cryopreservation and in frozen sperm

immediately after thawing. The DNA-fragmentation was determined on frozen-thawed sperm

using the sperm chromatin structure assay (SCSA). Membrane lipid peroxidation (LPO;

oxidation of lipiphilic probe C11-BODIPY581/591) was quantified with and without induction of

LPO using t-butyl hydroperoxide (TBHP) before cryopreservation, 0 and 3 h after thawing.

For TAC, SOD and GPx, intra-assay coefficients of variation (CV) were 5.0, 3.5 and 6.2 %,

respectively, and inter-assay CV were 8.3, 3.6 and 8.3 %. Levels of TAC, SOD and GPx

differed among bulls (P < 0.0001), but not among ejaculates within bulls (P > 0.05). There

was a negative correlation (r=-0.76; P ≤ 0.05) between SOD and GPx, but there were no

(P > 0.05) other relationships between antioxidants. The TAC was negatively correlated with

TBHP-LPO at 0 h (r=-0.85; P ≤ 0.01) and there were positive correlations between SOD and

LPO at 0 h (r=0.71; P ≤ 0.05) and 3 h (r=0.80; P ≤ 0.05). There were no (P > 0.05)

relationships between DFI and antioxidant levels.

In the second part of the study, semen was collected from 17 Holstein Friesian bulls for four

weeks twice a week. Thereafter, the basal ration of nine bulls (ALA bulls; age: 3.2±1 yrs) was

Page 63: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

53

supplemented with 800 g/day coated alpha-linolenic acid and the basal ration of eight bulls

(PA bulls; age: 3.7±0.8 yrs) was supplemented with 400 g/day palmitic acid (Bergafat®).

Both fat supplementations were fed for 12 weeks. Volume, sperm concentration, and total

sperm number of each ejaculate were determined. PMI and AD were evaluated by flow

cytometry before cryopreservation and after thawing. Levels of TAC, GPx and SOD were

determined in seminal plasma before and after fat supplementation. Fatty acid content in

shock frozen sperm samples was determined using gas chromatography before and after fat

supplementation. Feeding ALA increased (P < 0.05) the content of docosahexaenoic acid in

ALA bulls whereas the DHA content in PA bulls did not (P > 0.05) change. The increase of

DHA in ALA bulls had no (P > 0.05) effect on the seminal plasma levels of TAC, GPx and

SOD. Before cryopreservation, values of PMI- and AD were not (P > 0.05) affected by the

additional feeding of fatty acids, neither by PA nor by ALA. PMI increased and AD

decreased after cryopreservation in ALA bulls as well as in PA bulls during the study period

(P < 0.005).

In summary, a reliable assay for assessment of TAC in bovine seminal plasma was

established. The measurement of TAC gave valuable information about the sensivity of sperm

against lipid peroxidation of cryopreserved sperm. The feeding of neither saturated nor

polyunsaturated fatty acids affected the antioxidant levels in bovine seminal plasma. Both

types of fatty acids increased the quality of cryopreserved sperm, although the content of

docosahexaenoic acid in sperm membranes increased only in ALA bulls.

Page 64: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

54

6. ZUSAMMENFASSUNG

Oguz Calisici

Untersuchung der antioxidativen Kapazität des bovinen Seminalplasmas– Effekte der

Fütterung von Omega-3 Fettsäure

Das erste Ziel der vorliegenden Arbeit war es, einen Test zu etablieren, um die totale

antioxidative Kapazität (TAC) im Seminalplasma von Bullen zu bestimmen und zu prüfen, ob

ein Zusammenhang zwischen TAC und anderen Antioxidantien im Seminalplasma und der

Spermaqualität besteht. Das zweite Ziel der Studie lag darin, zu überprüfen, ob die Fütterung

der mehrfach ungesättigten Fettsäuren die antioxidative Kapazität im Seminalplasma

beeinflusst.

Für den ersten Teil der Studie wurden von neun Bullen der Rasse Holstein Frisian über 4

Wochen je zweimal wöchentlich Ejakulate gewonnen. Die Untersuchungsmethoden von TAC,

Glutathion-Peroxidase (GPx) und Superoxid-Dismutase (SOD) wurden für den Gebrauch in

einem automatischen 96-Well-Mikroplatten-Reader modifiziert. Die

Plasmamembranintegrität (PMI) und die akrosomale Schädigung (AD) von frisch verdünntem

und kryokonserviertem Sperma wurden mittels Durchflusszytometrie bestimmt. Die

Bestimmung der DNA-Fragmentierung erfolgte an kryokonserviertem Sperma mit Hilfe des

Sperm-Chromatin-Struktur Assays (SCSA™). Die Membranlipidperoxidation (LPO) wurde

mit und ohne Induktion der LPO durch tertiäres Butylhydroperoxid (TBHP) vor der

Kryokonservierung, unmittelbar (0h) und 3 Stunden (3h) nach dem Auftauen quantifiziert.

Für die Bestimmungen von TAC, SOD und GPx lagen die Intra-Assay-Variations-

koeffizienten (CV) bei 5,0, 3,5 und 6,2 % und die Inter-Assay-Variationskoeffizienten (CV)

bei 8,3, 3,6 und 8,3 %. Der Gehalt von TAC, SOD und GPx unterschied sich zwischen den

Bullen (P < 0,0001) aber es bestanden keine (P > 0,05) Unterschiede zwischen den einzelnen

Ejakulaten. SOD und GPx korrelierten negativ (r=-0,76; P ≤ 0,05) miteinander. Es waren

keine (P > 0,05) Zusammenhänge zwischen den anderen Antioxidantien festzustellen. Eine

negative Korrelation gab es zwischen TAC und TBHP-LPO unmittelbar nach dem Auftauen

(r=-0,85; P ≤ 0,01). Die SOD-Werte korrelierten positiv mit den unmittelbar (r=0,71;

Page 65: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

55

P ≤ 0,05) und 3 Stunden nach dem Auftauen erhobenen LPO-Werten (r=0,80; P ≤ 0,05).

Keine (P > 0,05) Zusammenhänge waren zwischen DFI und den Antioxidantien festzustellen.

Für den zweiten Teil der Studie wurden zunächst über einen Zeitraum von 4 Wochen 8

Ejakulate von 17 Holstein Frisian Bullen gewonnen. Anschließend wurde der Grundration

von 9 Bullen 800 g gecoateter Alpha-Linolensäure (ALA) pro Tag zugesetzt. Die Grundration

der 8 Bullen der Kontrollgruppe wurde mit 400 g Palmitinsäure (PO) pro Tag angereichert.

Die Fettsupplementation wurden über 12 Wochen durchgeführt. Das Volumen, die

Spermienkonzentration und die Gesamtspermienzahl jedes Ejakulates, sowie PMI und AD

vor und nach der Kryokonservierung wurden bestimmt. Die Seminalplasmagehalte an TAC,

SOD und GPx (vier Wochen lang vor Versuchsbeginn und vier Wochen lang am Ende des

Versuches) sowie die Fettsäureanteile in der Spermienmembranen wurden am Anfang (1.

Versuchswoche) und nach der Fettsupplementation (12 Wochen nach Versuchsbeginn)

ermittelt.

Durch die ALA-Fütterung erhöhte sich der Anteil von DHA (P < 0,05) in der Spermien-

membran, während der DHA-Anteil in den Spermien der PA-Bullen gleich blieb (P > 0,05).

Der DHA-Anstieg in der ALA-Gruppe hatte keine (P > 0,05) Auswirkungen auf die

Antioxidantien (TAC, SOD und GPx). Die vor der Kryokonservierung ermittelten PMI- und

AD-Werte änderte sich auch nicht (P > 0,05) durch die Fütterung der beiden Fettsäuren, ALA

und PO. Im Gegensatz dazu war nach dem Auftauen bei den Spermien beider

Fütterungsgruppen ein Anstieg von PMI und ein Abfall von AD nachweisbar (P < 0,005).

Zusammenfassend wurde im Rahmen dieser Arbeit eine verlässliche Methode zur Messung

von TAC in bovinem Seminalplasma etabliert. Der TAC-Wert lieferte wichtige Informationen

über die Sensibilität von Spermien gegenüber LPO bei der Kryokonservierung. Die Fütterung

von gesättigten als auch von mehrfach ungesättigten Fettsäuren hatte zwar keine Auswirkung

auf die antioxidative Kapazität in bovinem Seminalplasma, jedoch hatten beide

Fettsäuretypen einen positiven Einfluss auf die Spermaqualität.

Page 66: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

56

7. REFERENCES

ABU-ERREISH, G., L. MAGNES and T. K. LI (1978): Isolation and Properties of Superoxide Dismutase from Ram Spermatozoa and Erythrocytes. Biol Reprod 18, 554-560 ADEEL, M., A. IJAZ, M. ALEEM, H. REHMAN, M. S. YOUSAF and M. A. JABBAR (2009): Improvement of Liquid and Frozen-Thawed Semen Quality of Nili-Ravi Buffalo Bulls (Bubalus Bubalis) through Supplementation of Fat. Theriogenology 71, 1220-1225 AEBI, H. (1984): Catalase in Vitro. Methods Enzymol 105, 121-126 AGARWAL, A. and S. A. PRABAKARAN (2005): Mechanism, Measurement, and Prevention of Oxidative Stress in Male Reproductive Physiology. Indian J Exp Biol 43, 963-974 AGARWAL, A., S. A. PRABAKARAN and T. M. SAID (2005): Prevention of Oxidative Stress Injury to Sperm. J Androl 26, 654-660 AGARWAL, A. and R. A. SALEH (2002): Role of Oxidants in Male Infertility: Rationale, Significance, and Treatment. Urol Clin North Am 29, 817-827 AITKEN, R. J. and M. A. BAKER (2004): Oxidative Stress and Male Reproductive Biology. Reprod Fertil Dev 16, 581-588 AITKEN, R. J., M. A. BAKER and M. O'BRYAN (2004): Shedding Light on Chemiluminescence: The Application of Chemiluminescence in Diagnostic Andrology. J Androl 25, 455-465 AITKEN, R. J., D. W. BUCKINGHAM and K. M. WEST (1992): Reactive Oxygen Species and Human Spermatozoa: Analysis of the Cellular Mechanisms Involved in Luminol- and Lucigenin-Dependent Chemiluminescence. J Cell Physiol 151, 466-477 AITKEN, R. J. and J. S. CLARKSON (1987): Cellular Basis of Defective Sperm Function and Its Association with the Genesis of Reactive Oxygen Species by Human Spermatozoa.

Page 67: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

57

J Reprod Fertil 81, 459-469 AITKEN, R. J., J. S. CLARKSON and S. FISHEL (1989): Generation of Reactive Oxygen Species, Lipid Peroxidation, and Human Sperm Function. Biol Reprod 41, 183-197 AITKEN, R. J. and H. FISHER (1994): Reactive Oxygen Species Generation and Human Spermatozoa: The Balance of Benefit and Risk. Bioessays 16, 259-267 AITKEN, R. J., D. S. IRVINE and F. C. WU (1991): Prospective Analysis of Sperm-Oocyte Fusion and Reactive Oxygen Species Generation as Criteria for the Diagnosis of Infertility. Am J Obstet Gynecol 164, 542-551 AITKEN, R. J. and C. KRAUSZ (2001): Oxidative Stress, DNA Damage and the Y Chromosome. Reproduction 122, 497-506 AITKEN, R. J., J. K. WINGATE, G. N. DE IULIIS and E. A. MCLAUGHLIN (2007): Analysis of Lipid Peroxidation in Human Spermatozoa Using Bodipy C11. Mol Hum Reprod 13, 203-211 ALVAREZ, J. G. and B. T. STOREY (1984): Lipid Peroxidation and the Reactions of Superoxide and Hydrogen Peroxide in Mouse Spermatozoa. Biol Reprod 30, 833-841 ASHWORTH, P. J., R. A. HARRISON, N. G. MILLER, J. M. PLUMMER and P. F. WATSON (1995): Flow Cytometric Detection of Bicarbonate-Induced Changes in Lectin Binding in Boar and Ram Sperm Populations. Mol Reprod Dev 40, 164-176 AUSTIN, C. R. and M. W. BISHOP (1958): Capacitation of Mammalian Spermatozoa. Nature 181, 851 BALL, B. A. (2008): Oxidative Stress, Osmotic Stress and Apoptosis: Impacts on Sperm Function and Preservation in the Horse. Anim Reprod Sci 107, 257-267 BALL, B. A., C. G. GRAVANCE, V. MEDINA, J. BAUMBER and I. K. LIU (2000): Catalase Activity in Equine Semen. Am J Vet Res 61, 1026-1030

Page 68: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

58

BALLACHEY, B. E., W. D. HOHENBOKEN and D. P. EVENSON (1987): Heterogeneity of Sperm Nuclear Chromatin Structure and Its Relationship to Bull Fertility. Biol Reprod 36, 915-925 BANSAL, A. K. and G. S. BILASPURI (2008): Oxidative Stress Alters Membrane Sulfhydryl Status, Lipid and Phospholipid Contents of Crossbred Cattle Bull Spermatozoa. Anim Reprod Sci 104, 398-404 BARTLE, J. L., P. L. SENGER and J. K. HILLERS (1980): Influence of Injected Selenium in Dairy Bulls on Blood and Semen Selenium, Glutathione Peroxidase and Seminal Quality. Biol Reprod 23, 1007-1013 BEISKER, W. (1994): A New Combined Integral-Light and Slit-Scan Data Analysis System (Das) for Flow Cytometry. Comput Methods Programs Biomed 42, 15-26 BELL, E. F. (1987): History of Vitamin E in Infant Nutrition. Am J Clin Nutr 46, 183-186 BILLIG, H., I. FURUTA, C. RIVIER, J. TAPANAINEN, M. PARVINEN and A. J. HSUEH (1995): Apoptosis in Testis Germ Cells: Developmental Changes in Gonadotropin Dependence and Localization to Selective Tubule Stages. Endocrinology 136, 5-12 BILODEAU, J. F., S. BLANCHETTE, N. CORMIER and M. A. SIRARD (2002): Reactive Oxygen Species-Mediated Loss of Bovine Sperm Motility in Egg Yolk Tris Extender: Protection by Pyruvate, Metal Chelators and Bovine Liver or Oviductal Fluid Catalase. Theriogenology 57, 1105-1122 BILODEAU, J. F., S. BLANCHETTE, C. GAGNON and M. A. SIRARD (2001): Thiols Prevent H2o2-Mediated Loss of Sperm Motility in Cryopreserved Bull Semen. Theriogenology 56, 275-286 BILODEAU, J. F., S. CHATTERJEE, M. A. SIRARD and C. GAGNON (2000): Levels of Antioxidant Defenses Are Decreased in Bovine Spermatozoa after a Cycle of Freezing and Thawing. Mol Reprod Dev 55, 282-288 BLESBOIS, E., V. DOUARD, M. GERMAIN, P. BONIFACE and F. PELLET (2004): Effects of N-3 Polyunsaturated Dietary Supplementation on the Reproductive Capacity of Male Turkeys.

Page 69: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

59

Theriogenology 61, 537-549 BLIGH, E. G. and W. J. DYER (1959): A Rapid Method of Total Lipid Extraction and Purification. Can J Biochem Physiol 37, 911-917 BOLLWEIN, H., I. FUCHS and C. KOESS (2008): Interrelationship between Plasma Membrane Integrity, Mitochondrial Membrane Potential and DNA Fragmentation in Cryopreserved Bovine Spermatozoa. Reprod Domest Anim 43, 189-195 BONGALHARDO, D. C., S. LEESON and M. M. BUHR (2009): Dietary Lipids Differentially Affect Membranes from Different Areas of Rooster Sperm. Poult Sci 88, 1060-1069 BRADFORD, M. M. (1976): A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal Biochem 72, 248-254 BRIGELIUS-FLOHE, R. and M. G. TRABER (1999): Vitamin E: Function and Metabolism. Faseb J 13, 1145-1155 BRINSKO, S. P., D. D. VARNER, C. C. LOVE, T. L. BLANCHARD, B. C. DAY and M. E. WILSON (2005): Effect of Feeding a Dha-Enriched Nutriceutical on the Quality of Fresh, Cooled and Frozen Stallion Semen. Theriogenology 63, 1519-1527 BROUWERS, J. F. and B. M. GADELLA (2003): In Situ Detection and Localization of Lipid Peroxidation in Individual Bovine Sperm Cells. Free Radic Biol Med 35, 1382-1391 BROWN, D. V., P. L. SENGER, S. L. STONE, J. A. FROSETH and W. C. BECKER (1977): Glutatione Peroxidase in Bovine Semen. J Reprod Fertil 50, 117-118 BURTON, G. W. (1994): Vitamin E: Molecular and Biological Function. Proc Nutr Soc 53, 251-262 CALVIN, H. I. (1981): Comparative Labelling of Rat Epididymal Spermatozoa by Intratesticularly Administered 65zncl2 and [35s]Cysteine. J Reprod Fertil 61, 65-73

Page 70: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

60

CASTELLINI, C., P. LATTAIOLI, A. DAL BOSCO, A. MINELLI and C. MUGNAI (2003): Oxidative Status and Semen Characteristics of Rabbit Buck as Affected by Dietary Vitamin E, C and N-3 Fatty Acids. Reprod Nutr Dev 43, 91-103 CEROLINI, S., A. MALDJIAN, F. PIZZI and T. M. GLIOZZI (2001): Changes in Sperm Quality and Lipid Composition During Cryopreservation of Boar Semen. Reproduction 121, 395-401 CEROLINI, S., P. F. SURAI, B. K. SPEAKE and N. H. SPARKS (2005): Dietary Fish and Evening Primrose Oil with Vitamin E Effects on Semen Variables in Cockerels. Br Poult Sci 46, 214-222 CHABORY, E., C. DAMON, A. LENOIR, G. KAUSELMANN, H. KERN, B. ZEVNIK, C. GARREL, F. SAEZ, R. CADET, J. HENRY-BERGER, M. SCHOOR, U. GOTTWALD, U. HABENICHT, J. R. DREVET and P. VERNET (2009): Epididymis Seleno-Independent Glutathione Peroxidase 5 Maintains Sperm DNA Integrity in Mice. J Clin Invest 119, 2074-2085 CHATTERJEE, S. and C. GAGNON (2001): Production of Reactive Oxygen Species by Spermatozoa Undergoing Cooling, Freezing, and Thawing. Mol Reprod Dev 59, 451-458 CHEN, S. S., L. S. CHANG and Y. H. WEI (2001): Oxidative Damage to Proteins and Decrease of Antioxidant Capacity in Patients with Varicocele. Free Radic Biol Med 30, 1328-1334 CONQUER, J. A., J. B. MARTIN, I. TUMMON, L. WATSON and F. TEKPETEY (2000): Effect of Dha Supplementation on Dha Status and Sperm Motility in Asthenozoospermic Males. Lipids 35, 149-154 DARLEY-USMAR, V., H. WISEMAN and B. HALLIWELL (1995): Nitric Oxide and Oxygen Radicals: A Question of Balance. FEBS Lett 369, 131-135 DAWRA, R. K. and O. P. SHARMA (1985): Effect of Seminal Plasma Antioxidant on Lipid Peroxidation in Spermatozoa, Mitochondria and Microsomes. Biochem Int 11, 333-339 DAWRA, R. K., O. P. SHARMA and H. P. MAKKAR (1984): Evidence for a Novel Antioxidant in Bovine Seminal Plasma.

Page 71: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

61

Biochem Int 8, 655-659 DE LAMIRANDE, E. and C. GAGNON (1995): Impact of Reactive Oxygen Species on Spermatozoa: A Balancing Act between Beneficial and Detrimental Effects. Hum Reprod 10 Suppl 1, 15-21 DE LAMIRANDE, E., H. JIANG, A. ZINI, H. KODAMA and C. GAGNON (1997): Reactive Oxygen Species and Sperm Physiology. Rev Reprod 2, 48-54 DEHNING, F. (2008) Einfluss Der Fütterung Von Omega-3-Fettsäure Auf Die Spermaqualität Von Bullen. Hannover, Tierärztliche Hochschule Hannover, Vet. Med. Dissertation. DÖCKE, F. (1963): Seminalplasma. In: Die Künstliche Besamung Bei Den Haustieren Gustav Fischer Verlag, Jena, 227-235 DUTEAUX, S. B., T. BERGER, R. A. HESS, B. L. SARTINI and M. G. MILLER (2004): Male Reproductive Toxicity of Trichloroethylene: Sperm Protein Oxidation and Decreased Fertilizing Ability. Biol Reprod 70, 1518-1526 ERENPREISS, J., M. SPANO, J. ERENPREISA, M. BUNGUM and A. GIWERCMAN (2006): Sperm Chromatin Structure and Male Fertility: Biological and Clinical Aspects. Asian J Androl 8, 11-29 EVANS, H. M. and K. S. BISHOP (1922): On the Existence of a Hitherto Unrecognized Dietary Factor Essential for Reproduction. Science 56, 650-651 EVENSON, D. and L. JOST (2000): Sperm Chromatin Structure Assay Is Useful for Fertility Assessment. Methods Cell Sci 22, 169-189 EWING, J. F. and D. R. JANERO (1995): Microplate Superoxide Dismutase Assay Employing a Nonenzymatic Superoxide Generator. Anal Biochem 232, 243-248 FAGAN, J. M., B. G. SLECZKA and I. SOHAR (1999): Quantitation of Oxidative Damage to Tissue Proteins. Int J Biochem Cell Biol 31, 751-757 FERNANDEZ-SANTOS, M. R., F. MARTINEZ-PASTOR, V. GARCIA-MACIAS, M. C. ESTESO, A. J. SOLER, P. PAZ, L. ANEL and J. J. GARDE (2007):

Page 72: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

62

Sperm Characteristics and DNA Integrity of Iberian Red Deer (Cervus Elaphus Hispanicus) Epididymal Spermatozoa Frozen in the Presence of Enzymatic and Nonenzymatic Antioxidants. J Androl 28, 294-305 FISCHER, A., E. HASENPUSCH, A. WEYAND and H. BOLLWEIN (2010): [Effects of Different Dilution Levels on Bull- and Ejaculate Related Variability of Plasmamembran Integrity, Acrosomal Damage and DNA-Integrity of Cryopreserved Bull Spermatozoa]. Berl Munch Tierarztl Wochenschr 123, 83-88 FOOTE, R. H. and E. HARE (2000): High Catalase Content of Rabbit Semen Appears to Be Inherited. J Androl 21, 664-668 FORD, W. C. and A. HARRISON (1983): D-[1-14c]Mannitol and [U-14c]Sucrose as Extracellular Space Markers for Human Spermatozoa and the Uptake of 2-Deoxyglucose. J Reprod Fertil 69, 479-487 FORESTA, C., L. FLOHE, A. GAROLLA, A. ROVERI, F. URSINI and M. MAIORINO (2002): Male Fertility Is Linked to the Selenoprotein Phospholipid Hydroperoxide Glutathione Peroxidase. Biol Reprod 67, 967-971 FORSTROM, J. W., J. J. ZAKOWSKI and A. L. TAPPEL (1978): Identification of the Catalytic Site of Rat Liver Glutathione Peroxidase as Selenocysteine. Biochemistry 17, 2639-2644 FRAGA, C. G., P. A. MOTCHNIK, A. J. WYROBEK, D. M. REMPEL and B. N. AMES (1996): Smoking and Low Antioxidant Levels Increase Oxidative Damage to Sperm DNA. Mutat Res 351, 199-203 FRIDOVICH, I. (1983): Superoxide Radical: An Endogenous Toxicant. Annu Rev Pharmacol Toxicol 23, 239-257 FRIDOVICH, I. (1995): Superoxide Radical and Superoxide Dismutases. Annu Rev Biochem 64, 97-112 FRIEDMAN, A. and S. MOE (2006): Review of the Effects of Omega-3 Supplementation in Dialysis Patients. Clin J Am Soc Nephrol 1, 182-192

Page 73: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

63

GARNER, D. L., C. A. THOMAS and C. H. ALLEN (1997): Effect of Semen Dilution on Bovine Sperm Viability as Determined by Dual-DNA Staining and Flow Cytometry. J Androl 18, 324-331 GARNER, D. L., C. A. THOMAS, C. G. GRAVANCE, C. E. MARSHALL, J. M. DEJARNETTE and C. H. ALLEN (2001): Seminal Plasma Addition Attenuates the Dilution Effect in Bovine Sperm. Theriogenology 56, 31-40 GAVELLA, M. and V. LIPOVAC (1992): Nadh-Dependent Oxidoreductase (Diaphorase) Activity and Isozyme Pattern of Sperm in Infertile Men. Arch Androl 28, 135-141 GLANDER, H. J. and D. DETTMER (1978): Monosaccharide Transport across Membranes of Human Spermatozoa. I. Development of a Radiochemical Method of Measuring Monosaccharide Uptake by Spermatozoa. Andrologia 10, 69-73 GÜNZLER, A. and L. FLOHÉ (1985): Glutathione Peroxidase. In: Crc Handbook of Methods for Oxygen Radical Research CRC Press, Boca Raton, Fla. , 285-290 HAIDL, G. and C. OPPER (1997): Changes in Lipids and Membrane Anisotropy in Human Spermatozoa During Epididymal Maturation. Hum Reprod 12, 2720-2723 HALL, L., K. WILLIAMS, A. C. PERRY, J. FRAYNE and J. A. JURY (1998): The Majority of Human Glutathione Peroxidase Type 5 (Gpx5) Transcripts Are Incorrectly Spliced: Implications for the Role of Gpx5 in the Male Reproductive Tract. Biochem J 333 ( Pt 1), 5-9 HALLIWELL, B. (1989): Free Radicals, Reactive Oxygen Species and Human Disease: A Critical Evaluation with Special Reference to Atherosclerosis. Br J Exp Pathol 70, 737-757 HALLIWELL, B. (1990): How to Characterize a Biological Antioxidant. Free Radic Res Commun 9, 1-32 HALLIWELL, B. (2006): Reactive Species and Antioxidants. Redox Biology Is a Fundamental Theme of Aerobic Life. Plant Physiol 141, 312-322

Page 74: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

64

HALLIWELL, B. and C. E. CROSS (1994): Oxygen-Derived Species: Their Relation to Human Disease and Environmental Stress. Environ Health Perspect 102 Suppl 10, 5-12 HALLIWELL, B. and J. M. GUTTERIDGE (1989): Free Radicals in Biology and Medicine Clarendon Press Oxford, UK HALLIWELL, B. and J. M. GUTTERIDGE (1990): Role of Free Radicals and Catalytic Metal Ions in Human Disease: An Overview. Methods Enzymol 186, 1-85 HAMMERSTEDT, R. H. (1993): Maintenance of Bioenergetic Balance in Sperm and Prevention of Lipid Peroxidation: A Review of the Effect on Design of Storage Preservation Systems. Reprod Fertil Dev 5, 675-690 HAMMERSTEDT, R. H., J. K. GRAHAM and J. P. NOLAN (1990): Cryopreservation of Mammalian Sperm: What We Ask Them to Survive. J Androl 11, 73-88 HARTREE, E. F. and T. MANN (1961): Phospholipids in Ram Semen: Metabolism of Plasmalogen and Fatty Acids. Biochem J 80, 464-476 HENGARTNER, M. O. (1997): Apoptosis and the Shape of Death. Dev Genet 21, 245-248 HERBETTE, S., P. ROECKEL-DREVET and J. R. DREVET (2007): Seleno-Independent Glutathione Peroxidases. More Than Simple Antioxidant Scavengers. Febs J 274, 2163-2180 HERRERA, E. and C. BARBAS (2001): Vitamin E: Action, Metabolism and Perspectives. J Physiol Biochem 57, 43-56 HUANG, H. F. and W. C. HEMBREE (1979): Spermatogenic Response to Vitamin a in Vitamin a Deficient Rats. Biol Reprod 21, 891-904 HUNTER, R. H. and H. RODRIGUEZ-MARTINEZ (2004): Capacitation of Mammalian Spermatozoa in Vivo, with a Specific Focus on Events in the Fallopian Tubes. Mol Reprod Dev 67, 243-250 IWASAKI, A. and C. GAGNON (1992):

Page 75: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

65

Formation of Reactive Oxygen Species in Spermatozoa of Infertile Patients. Fertil Steril 57, 409-416 JANUSKAUSKA, A., A. JOHANNISSON and H. RODRIGUEZ-MARTINEZ (2001): Assessment of Sperm Quality through Fluorometry and Sperm Chromatin Structure Assay in Relation to Field Fertility of Frozen-Thawed Semen from Swedish Ai Bulls. Theriogenology 55, 947-961 JEULIN, C., J. C. SOUFIR, P. WEBER, D. LAVAL-MARTIN and R. CALVAYRAC (1989): Catalase Activity in Human Spermatozoa and Seminal Plasma. Gamete Res 24, 185-196 JONES, R. and T. MANN (1977): Damage to Ram Spermatozoa by Peroxidation of Endogenous Phospholipids. J Reprod Fertil 50, 261-268 JONES, R., T. MANN and R. SHERINS (1979): Peroxidative Breakdown of Phospholipids in Human Spermatozoa, Spermicidal Properties of Fatty Acid Peroxides, and Protective Action of Seminal Plasma. Fertil Steril 31, 531-537 KANTOLA, M., M. SAARANEN and T. VANHA-PERTTULA (1988): Selenium and Glutathione Peroxidase in Seminal Plasma of Men and Bulls. J Reprod Fertil 83, 785-794 KASIMANICKAM, R., V. KASIMANICKAM, C. D. THATCHER, R. L. NEBEL and B. G. CASSELL (2007): Relationships among Lipid Peroxidation, Glutathione Peroxidase, Superoxide Dismutase, Sperm Parameters, and Competitive Index in Dairy Bulls. Theriogenology 67, 1004-1012 KASIMANICKAM, R., K. D. PELZER, V. KASIMANICKAM, W. S. SWECKER and C. D. THATCHER (2006): Association of Classical Semen Parameters, Sperm DNA Fragmentation Index, Lipid Peroxidation and Antioxidant Enzymatic Activity of Semen in Ram-Lambs. Theriogenology 65, 1407-1421 KELSO, K. A., S. CEROLINI, R. C. NOBLE, N. H. SPARKS and B. K. SPEAKE (1996): Lipid and Antioxidant Changes in Semen of Broiler Fowl from 25 to 60 Weeks of Age. J Reprod Fertil 106, 201-206 KELSO, K. A., S. CEROLINI, B. K. SPEAKE, L. G. CAVALCHINI and R. C. NOBLE (1997a): Effects of Dietary Supplementation with Alpha-Linolenic Acid on the Phospholipid Fatty Acid Composition and Quality of Spermatozoa in Cockerel from 24 to 72 Weeks of Age. J Reprod Fertil 110, 53-59

Page 76: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

66

KELSO, K. A., A. REDPATH, R. C. NOBLE and B. K. SPEAKE (1997b): Lipid and Antioxidant Changes in Spermatozoa and Seminal Plasma Throughout the Reproductive Period of Bulls. J Reprod Fertil 109, 1-6 KERR, J. F., A. H. WYLLIE and A. R. CURRIE (1972): Apoptosis: A Basic Biological Phenomenon with Wide-Ranging Implications in Tissue Kinetics. Br J Cancer 26, 239-257 KIRKMAN, H. N., S. GALIANO and G. F. GAETANI (1987): The Function of Catalase-Bound Nadph. J Biol Chem 262, 660-666 KIRTON, K. T., H. D. HAFS and A. G. HUNTER (1964): Levels of Some Normal Constituents of Bull Semen During Repetitive Ejaculation. J Reprod Fertil 8, 157-164 KOBAYASHI, T., T. MIYAZAKI, M. NATORI and S. NOZAWA (1991): Protective Role of Superoxide Dismutase in Human Sperm Motility: Superoxide Dismutase Activity and Lipid Peroxide in Human Seminal Plasma and Spermatozoa. Hum Reprod 6, 987-991 KOLETTIS, P. N., R. K. SHARMA, F. F. PASQUALOTTO, D. NELSON, A. J. THOMAS, JR. and A. AGARWAL (1999): Effect of Seminal Oxidative Stress on Fertility after Vasectomy Reversal. Fertil Steril 71, 249-255 KOPPERS, A. J., G. N. DE IULIIS, J. M. FINNIE, E. A. MCLAUGHLIN and R. J. AITKEN (2008): Significance of Mitochondrial Reactive Oxygen Species in the Generation of Oxidative Stress in Spermatozoa. J Clin Endocrinol Metab 93, 3199-3207 KRUIDENIER, L. and H. W. VERSPAGET (2002): Review Article: Oxidative Stress as a Pathogenic Factor in Inflammatory Bowel Disease--Radicals or Ridiculous? Aliment Pharmacol Ther 16, 1997-2015 LENZI, A., M. PICARDO, L. GANDINI and F. DONDERO (1996): Lipids of the Sperm Plasma Membrane: From Polyunsaturated Fatty Acids Considered as Markers of Sperm Function to Possible Scavenger Therapy. Hum Reprod Update 2, 246-256 LEPAGE, G. and C. C. ROY (1986): Direct Transesterification of All Classes of Lipids in a One-Step Reaction. J Lipid Res 27, 114-120

Page 77: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

67

MACLEOD, J. (1943): The Role of Oxygen in the Metabolism and Motility of Human Spermatozoa. Am J Physiol 138, 512-518 MAIORINO, M., V. BOSELLO, F. URSINI, C. FORESTA, A. GAROLLA, M. SCAPIN, H. SZTAJER and L. FLOHE (2003): Genetic Variations of Gpx-4 and Male Infertility in Humans. Biol Reprod 68, 1134-1141 MAIORINO, M., M. COASSIN, A. ROVERI and F. URSINI (1989): Microsomal Lipid Peroxidation: Effect of Vitamin E and Its Functional Interaction with Phospholipid Hydroperoxide Glutathione Peroxidase. Lipids 24, 721-726 MARKLUND, S. L., N. G. WESTMAN, E. LUNDGREN and G. ROOS (1982): Copper- and Zinc-Containing Superoxide Dismutase, Manganese-Containing Superoxide Dismutase, Catalase, and Glutathione Peroxidase in Normal and Neoplastic Human Cell Lines and Normal Human Tissues. Cancer Res 42, 1955-1961 MARTI, E., J. I. MARTI, T. MUINO-BLANCO and J. A. CEBRIAN-PEREZ (2008): Effect of the Cryopreservation Process on the Activity and Immunolocalization of Antioxidant Enzymes in Ram Spermatozoa. J Androl 29, 459-467 MARTIN, G., O. SABIDO, P. DURAND and R. LEVY (2004): Cryopreservation Induces an Apoptosis-Like Mechanism in Bull Sperm. Biol Reprod 71, 28-37 MCCORD, J. M. and I. FRIDOVICH (1969): Superoxide Dismutase. An Enzymic Function for Erythrocuprein (Hemocuprein). J Biol Chem 244, 6049-6055 MEISTER, A. (1988): Glutathione Metabolism and Its Selective Modification. J Biol Chem 263, 17205-17208 MENNELLA, M. R. and R. JONES (1980): Properties of Spermatozoal Superoxide Dismutase and Lack of Involvement of Superoxides in Metal-Ion-Catalysed Lipid-Peroxidation and Reactions in Semen. Biochem J 191, 289-297 NEILD, D. M., J. F. BROUWERS, B. COLENBRANDER, A. AGUERO and B. M. GADELLA (2005): Lipid Peroxide Formation in Relation to Membrane Stability of Fresh and Frozen Thawed Stallion Spermatozoa. Mol Reprod Dev 72, 230-238

Page 78: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

68

NEILL, A. R. and C. J. MASTERS (1972): Metabolism of Fatty Acids by Bovine Spermatozoa. Biochem J 127, 375-385 O, W. S., H. CHEN and P. H. CHOW (2006): Male Genital Tract Antioxidant Enzymes--Their Ability to Preserve Sperm DNA Integrity. Mol Cell Endocrinol 250, 80-83 OCHSENDORF, F. R. and J. FUCHS (1997): Antioxidants in Germinal Epithelium, Spermatozoa and Seminal Plasma. In: Oxidative Stress in Male Infertility Gardez! Verlag, St. Augustin, 85-129 OLIVER, C. N., B. W. AHN, E. J. MOERMAN, S. GOLDSTEIN and E. R. STADTMAN (1987): Age-Related Changes in Oxidized Proteins. J Biol Chem 262, 5488-5491 OLLERO, M., E. GIL-GUZMAN, M. C. LOPEZ, R. K. SHARMA, A. AGARWAL, K. LARSON, D. EVENSON, A. J. THOMAS, JR. and J. G. ALVAREZ (2001): Characterization of Subsets of Human Spermatozoa at Different Stages of Maturation: Implications in the Diagnosis and Treatment of Male Infertility. Hum Reprod 16, 1912-1921 OLLERO, M., R. D. POWERS and J. G. ALVAREZ (2000): Variation of Docosahexaenoic Acid Content in Subsets of Human Spermatozoa at Different Stages of Maturation: Implications for Sperm Lipoperoxidative Damage. Mol Reprod Dev 55, 326-334 ORRENIUS, S. (2007): Reactive Oxygen Species in Mitochondria-Mediated Cell Death. Drug Metab Rev 39, 443-455 PALLUDAN, B. (1966): Direct Effect of Vitamin a on Boar Testis. Nature 211, 639-640 PALOZZA, P. and N. I. KRINSKY (1992): Antioxidant Effects of Carotenoids in Vivo and in Vitro: An Overview. Methods Enzymol 213, 403-420 PAPPAS, A. C., E. ZOIDIS, P. F. SURAI and G. ZERVAS (2008): Selenoproteins and Maternal Nutrition. Comp Biochem Physiol B Biochem Mol Biol 151, 361-372 PARKS, J. E. and D. V. LYNCH (1992):

Page 79: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

69

Lipid Composition and Thermotropic Phase Behavior of Boar, Bull, Stallion, and Rooster Sperm Membranes. Cryobiology 29, 255-266 PASQUALOTTO, F. F., A. SUNDARAM, R. K. SHARMA, E. BORGES, JR., E. B. PASQUALOTTO and A. AGARWAL (2008): Semen Quality and Oxidative Stress Scores in Fertile and Infertile Patients with Varicocele. Fertil Steril 89, 602-607 PAULENZ, H., O. TAUGBØL, E. KOMMISRUD and I. S. GREVLE (1999): Effect of Dietary Supplementation with Cod Liver Oil on Cold Shock and Freezability of Boar Semen. Reproduction in Domestic Animals 34, 431-435 PETZOLT, R. (2001): Akzessorisches Sekret In: Veterinärmedizinische Andrologie Schattauer Verlag, Stuttgart, New York, 55-66 POULOS, A., A. DARIN-BENNETT and I. G. WHITE (1973): The Phospholipid-Bound Fatty Acids and Aldehydes of Mammalian Spermatozoa. Comp Biochem Physiol B 46, 541-549 RODRIGUEZ, I., C. ODY, K. ARAKI, I. GARCIA and P. VASSALLI (1997): An Early and Massive Wave of Germinal Cell Apoptosis Is Required for the Development of Functional Spermatogenesis. Embo J 16, 2262-2270 ROOKE, J. A., C. C. SHAO and B. K. SPEAKE (2001): Effects of Feeding Tuna Oil on the Lipid Composition of Pig Spermatozoa and in Vitro Characteristics of Semen. Reproduction 121, 315-322 ROTHSCHILD, L. and H. BARNES (1954): Constituents of Bull Seminal Plasma. J Exp Biol 31, 561-572 SAARANEN, M., U. SUISTOMAA, M. KANTOLA, E. REMES and T. VANHA-PERTTULA (1986): Selenium in Reproductive Organs, Seminal Fluid and Serum of Men and Bulls. Hum Reprod 1, 61-64 SAARANEN, M., U. SUISTOMAA and T. VANHA-PERTTULA (1989): Semen Selenium Content and Sperm Mitochondrial Volume in Human and Some Animal Species. Hum Reprod 4, 304-308

Page 80: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

70

SALEH, R. A., H. KOBAYASHI, P. RANGANATHAN, R. K. SHARMA, D. R. NELSON and A. AGARWAL (2001): Assessment of Laboratory Variability in the Measurement of Total Non-Enzymatic Antioxidant Capacity of Semen Using an Enhanced Chemiluminescence Assay. Fertility and sterility 76, S246 SALEM, N. J., H.-Y. KIM and J. A. YERGEY (1986): Docosahexaenoic Acid: Membrane Function and Metabolism. In: Health Effects of Polyunsaturated Fatty Acids in Seafoods Academic Press, New York 319–351 SCOTT, T. W. and R. M. DAWSON (1968): Metabolism of Phospholipids by Spermatozoa and Seminal Plasma. Biochem J 108, 457-463 SENGOKU, K., K. TAMATE, T. YOSHIDA, Y. TAKAOKA, T. MIYAMOTO and M. ISHIKAWA (1998): Effects of Low Concentrations of Nitric Oxide on the Zona Pellucida Binding Ability of Human Spermatozoa. Fertil Steril 69, 522-527 SHANNON, P. and B. CURSON (1982): Site of Aromatic L-Amino Acid Oxidase in Dead Bovine Spermatozoa and Determination of between-Bull Differences in the Percentage of Dead Spermatozoa by Oxidase Activity. J Reprod Fertil 64, 469-473 SHARMA, R. K., F. F. PASQUALOTTO, D. R. NELSON, A. J. THOMAS, JR. and A. AGARWAL (1999): The Reactive Oxygen Species-Total Antioxidant Capacity Score Is a New Measure of Oxidative Stress to Predict Male Infertility. Hum Reprod 14, 2801-2807 SIES, H. (1991): Role of Reactive Oxygen Species in Biological Processes. Klin Wochenschr 69, 965-968 SIES, H. (1993): Strategies of Antioxidant Defense. Eur J Biochem 215, 213-219 SIKKA, S. C. (2001): Relative Impact of Oxidative Stress on Male Reproductive Function. Curr Med Chem 8, 851-862 SIKKA, S. C. (2004): Role of Oxidative Stress and Antioxidants in Andrology and Assisted Reproductive Technology. J Androl 25, 5-18

Page 81: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

71

SIKKA, S. C., M. RAJASEKARAN and W. J. HELLSTROM (1995): Role of Oxidative Stress and Antioxidants in Male Infertility. J Androl 16, 464-468 SLAWETA, R. and T. LASKOWSKA-KLITA (1985): Glutathione Content in the Semen of Bulls of the Lowland Black-White Breed. Acta Physiol Pol 36, 107-111 SLAWETA, R., T. LASKOWSKA and E. SZYMANSKA (1988): Lipid Peroxides, Spermatozoa Quality and Activity of Glutathione Peroxidase in Bull Semen. Acta Physiol Pol 39, 207-214 SMITH, D. G., P. L. SENGER, J. F. MCCUTCHAN and C. A. LANDA (1979): Selenium and Glutathione Peroxidase Distribution in Bovine Semen and Selenium-75 Retention by the Tissues of the Reproductive Tract in the Bull. Biol Reprod 20, 377-383 STOREY, B. T. (1997): Biochemistry of the Induction and Prevention of Lipoperoxidative Damage in Human Spermatozoa. Mol Hum Reprod 3, 203-213 STRADAIOLI, G., T. NORO, L. SYLLA and M. MONACI (2007): Decrease in Glutathione (Gsh) Content in Bovine Sperm after Cryopreservation: Comparison between Two Extenders. Theriogenology 67, 1249-1255 SURAI, P. F. (1999): Vitamin E in Avian Reproduction. Poult. Avian Biol. Rev. 10, 1-60 SURAI, P. F., J. P. BRILLARD, B. K. SPEAKE, E. BLESBOIS, F. SEIGNEURIN and N. H. SPARKS (2000a): Phospholipid Fatty Acid Composition, Vitamin E Content and Susceptibility to Lipid Peroxidation of Duck Spermatozoa. Theriogenology 53, 1025-1039 SURAI, P. F., E. KUTZ, G. J. WISHART, R. C. NOBLE and B. K. SPEAKE (1997): The Relationship between the Dietary Provision of Alpha-Tocopherol and the Concentration of This Vitamin in the Semen of Chicken: Effects on Lipid Composition and Susceptibility to Peroxidation. J Reprod Fertil 110, 47-51 SURAI, P. F., R. C. NOBLE, N. H. SPARKS and B. K. SPEAKE (2000b): Effect of Long-Term Supplementation with Arachidonic or Docosahexaenoic Acids on Sperm Production in the Broiler Chicken. J Reprod Fertil 120, 257-264

Page 82: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

72

TAVILANI, H., M. DOOSTI, K. ABDI, A. VAISIRAYGANI and H. R. JOSHAGHANI (2006): Decreased Polyunsaturated and Increased Saturated Fatty Acid Concentration in Spermatozoa from Asthenozoospermic Males as Compared with Normozoospermic Males. Andrologia 38, 173-178 TAVILANI, H., M. T. GOODARZI, M. DOOSTI, A. VAISI-RAYGANI, T. HASSANZADEH, S. SALIMI and H. R. JOSHAGHANI (2008): Relationship between Seminal Antioxidant Enzymes and the Phospholipid and Fatty Acid Composition of Spermatozoa. Reprod Biomed Online 16, 649-656 TOSIC, J. and A. WALTON (1950): Metabolism of Spermatozoa. The Formation and Elimination of Hydrogen Peroxide by Spermatozoa and Effects on Motility and Survival. Biochem J 47, 199-212 TRAMER, F., F. ROCCO, F. MICALI, G. SANDRI and E. PANFILI (1998): Antioxidant Systems in Rat Epididymal Spermatozoa. Biol Reprod 59, 753-758 TREMELLEN, K. (2008): Oxidative Stress and Male Infertility--a Clinical Perspective. Hum Reprod Update 14, 243-258 TURRENS, J. F. (2003): Mitochondrial Formation of Reactive Oxygen Species. J Physiol 552, 335-344 TWIGG, J., N. FULTON, E. GOMEZ, D. S. IRVINE and R. J. AITKEN (1998a): Analysis of the Impact of Intracellular Reactive Oxygen Species Generation on the Structural and Functional Integrity of Human Spermatozoa: Lipid Peroxidation, DNA Fragmentation and Effectiveness of Antioxidants. Hum Reprod 13, 1429-1436 TWIGG, J., D. S. IRVINE, P. HOUSTON, N. FULTON, L. MICHAEL and R. J. AITKEN (1998b): Iatrogenic DNA Damage Induced in Human Spermatozoa During Sperm Preparation: Protective Significance of Seminal Plasma. Mol Hum Reprod 4, 439-445 URSINI, F., M. MAIORINO, R. BRIGELIUS-FLOHE, K. D. AUMANN, A. ROVERI, D. SCHOMBURG and L. FLOHE (1995): Diversity of Glutathione Peroxidases. Methods Enzymol 252, 38-53 VERNET, P., R. J. AITKEN and J. R. DREVET (2004):

Page 83: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

73

Antioxidant Strategies in the Epididymis. Mol Cell Endocrinol 216, 31-39 WABERSKI, D. (1995): Boar Seminal Plasma and Fertility. Reproduction in Domestic Animals 31, 87-90 WATERHOUSE, K. E., P. O. HOFMO, A. TVERDAL and R. R. MILLER, JR. (2006): Within and between Breed Differences in Freezing Tolerance and Plasma Membrane Fatty Acid Composition of Boar Sperm. Reproduction 131, 887-894 WATHES, D. C., D. R. ABAYASEKARA and R. J. AITKEN (2007): Polyunsaturated Fatty Acids in Male and Female Reproduction. Biol Reprod 77, 190-201 WATSON, P. F. (1995): Recent Developments and Concepts in the Cryopreservation of Spermatozoa and the Assessment of Their Post-Thawing Function. Reprod Fertil Dev 7, 871-891 WATSON, P. F. (2000): The Causes of Reduced Fertility with Cryopreserved Semen. Anim Reprod Sci 60-61, 481-492 WOHLHUETER, R. M., R. MARZ, J. C. GRAFF and P. G. PLAGEMANN (1978): A Rapid-Mixing Technique to Measure Transport in Suspended Animal Cells: Applications to Nucleoside Transport in Novikoff Rat Hepatoma Cells. Methods Cell Biol 20, 211-236 WU, A. S., J. E. OLDFIELD, L. R. SHULL and P. R. CHEEKE (1979): Specific Effect of Selenium Deficiency on Rat Sperm. Biol Reprod 20, 793-798 ZAKOWSKI, J. J., J. W. FORSTROM, R. A. CONDELL and A. L. TAPPEL (1978): Attachment of Selenocysteine in the Catalytic Site of Glutathione Peroxidase. Biochem Biophys Res Commun 84, 248-253 ZANIBONI, L., R. RIZZI and S. CEROLINI (2006): Combined Effect of Dha and Alpha-Tocopherol Enrichment on Sperm Quality and Fertility in the Turkey. Theriogenology 65, 1813-1827 ZANINI, S. F., C. A. TORRES, N. BRAGAGNOLO, J. M. TURATTI, M. G. SILVA and M. S. ZANINI (2003): Evaluation of the Ratio of Omega(6: Omega3 Fatty Acids and Vitamin E Levels in the Diet on the Reproductive Performance of Cockerels.

Page 84: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

74

Arch Tierernahr 57, 429-442 ZINI, A., E. DE LAMIRANDE and C. GAGNON (1995): Low Levels of Nitric Oxide Promote Human Sperm Capacitation in Vitro. J Androl 16, 424-431 ZINI, A., M. A. FISCHER, V. MAK, D. PHANG and K. JARVI (2002): Catalase-Like and Superoxide Dismutase-Like Activities in Human Seminal Plasma. Urol Res 30, 321-323

Page 85: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

75

8. APPENDIX

Food Suplements

Mineral Feed

178620 MOVIpress KaRiGro Mineralfutter für Rinder

(HS HEMO Qualitätsfutter GmbH & Co. KG, Lindhorst)

Ingredients

Calcium: 14,5%

Sodium: 9,0%

Phosphor: 3,5%

Magnesium: 3,5%

Additives per kg

Vitamin A: 1.000.000 IU

Vitamin D3: 135.000 IU

Vitamin E: 3.000 mg (as Alpha-Tocopherol acetate)

Biotin: 10.000 mg

Zinc: 8.000 mg (as Zincsulfate Monohydrate)

Copper: 825 mg (as copper-(II)-Sulfate Pentahydrate)

Mangane: 1550 mg (as Manganese-(II)-Sulfate)

Iodine: 80 mg (as Calciumjodat Anhydrate)

Cobalt: 15 mg (as basic Cobalt-(II)-Carbonat Monohydrate)

Selenium: 80 mg (as Sodiumselenite)

Page 86: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

76

Concentrated Feed (Kraftfutter „Rinderspezialfutter“)

(Hansa Landhandel, Zeven)

Composition

Barley: 25.0%

Wheat (geschrotet): 25.5%

Coarse colza meal: 5.0%

Whear bran: 12.0%

Maize gluten: 7,0%

Melasseschnitzel: 20.0%

Sugar beet molasses: 3.0%

Calcium carbonat: 1.0%

Natrium chlorid: 0.5%

Rind AF 220103: 1.0%

Page 87: Tierärztliche Hochschule Hannover Investigation of ...€¦ · Investigation of antioxidative capacity in bovine seminal plasma– Effects of Omega-3 fatty acids ... 3.1.3 Materials

77

ACKNOWLEDGEMENTS First of all I would like to thank my supervisor Prof. Dr. Heinrich Bollwein for entrusting me

with this work and for his continuous academic guidance, motivation, and patience.

I want to thank Prof. Dr. Marcus Pröpsting for his helpful suggestions.

Thanks to AI Station Masterrind, Verden for providing animals.

I want to thank all my friends in Hannover, above all to:

Martin Behr, Meik Becker, Olivia Gooß, Anja Sipka, Kadir Erkan, Arinc Kayacelebi, Murat

Erdogan, Yigit Dadas, A. Selin Coskan and Kivanc Inan for sharing wonderful hours together.

Members of SV Can-Arkadas for wonderful hours before, during and after our soccer

competitions.

My special thanks to my brother Ufuk Calisici and his wife Birgit Rupp, Stefan and my

uncles Mustafa and Bünyamin Kargin for their help in Germany.

I am grateful to my wife Duygu for giving me motivation and strength.

I would like to express my deepest thanks to my parents Fatma and Arslan Calisici, my

beloved grandparents Haci Mehmet Kargin and Emsal Kargin for their support during my

education.

(Ögrenimim süresince vermis olduklari destekten dolayi annem Fatma Calisici, babam Arslan

Calisici ve cok sevdigim dedem Haci Mehmet Kargin ve anneannem Emsal Kargin`a en icten

duygularimla tesekkür ederim).


Recommended