+ All Categories
Home > Documents > Starthilfe Thermodynamik ||

Starthilfe Thermodynamik ||

Date post: 24-Dec-2016
Category:
Upload: juergen
View: 222 times
Download: 6 times
Share this document with a friend
108
Transcript
Page 1: Starthilfe Thermodynamik ||
Page 2: Starthilfe Thermodynamik ||

H. K. Iben / J. Schmidt

Starthilfe Thermodynamik

Page 3: Starthilfe Thermodynamik ||

Starthilfe

Thermodynamik

Von Prof. Dr.-Ing. habil. Hans Karl Iben und Prof. Dr.-Ing. Jurgen Schmidt Otto-von-Guericke-Universitat Magdeburg

m B.G.Teubner Stuttgart· Leipzig 1999

Page 4: Starthilfe Thermodynamik ||

Prof. Dr.-Ing. habil. Hans Karl Iben

Geboren 1936 in Hirschberg/Riesengebirge. Von 1953 bis 1956 Fachschulstudium fOr Kfz-Bau in Zwickau. AnschlieBend bis 1962 Studium des Maschinenbaues an der TH Dresden in der Vertiefungsrichtung Stromungstechnik bei Herrn Prof. Dr.-Ing. Dr. h. c. mult. W. Albring. Ab 1962 Assistent an der TH Magdeburg am Institut fOr Stromungs­maschinen und Stromungstechnik bei Herrn Dr. phil. et. Dr.-Ing. R.lrrgang.1967 Promo­tion. Von 1967 bis 1968 Zusatzstudium am Energetischen Institut in Moskau bei Herrn Prof. Dr. Deitsch. 1969 Oberassistent am Institut fOr Stromungsmaschinen und Stro­mungstechnik der TH Magdeburg. Ab 1970 Hochschuldozent fOr Gasdynamik an der TH Magdeburg. 1974 Habilitation. 1993 Berufung als Api. Professor fOr Stromungslehre an der Otto-von-Guericke-Universitat Magdeburg am Institut fOr StromungstechnikfTher­modynamik. E-Mail: [email protected]

Prof. Dr.-Ing. JOrgen Schmidt

Geboren 1949 in SchOnstedtffhOringen. Von 1967 bis 1972 Studium der Verfahrens­technik an der TH Magdeburg. Ab 1972 Assistent am Institut fOr Thermodynamik. 1977 Promotion auf dem Gebiet der Thermodynamik irreversibler Prozesse. 1982 facultas docendi fOr Thermodynamik. Von 1984 bis 1987 Hochschuldozent fOr Thermodynamik und Fluidmechanik am Centre Universitaire von Tiaretl Algerien. 1989 Berufung zum Hochschuldozenten und seit 1993 o. Professor fOr Thermodynamik an der Otto-von­Guericke-Universitat Magdeburg. E-Mail: [email protected]

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Iben, Hans Karl: Starthilfe Thermodynamik / von Hans Karl Iben und JOrgen Schmidt. - Stuttgart; Leipzig: Teubner, 1999

ISBN 978-3-519-00262-8 ISBN 978-3-322-87176-3 (eBook) 001 10.1007/978-3-322-87176-3

Das Werk einschlieBlich aller seiner Teile ist urheberrechtlich geschOtzt. Jede Verwer­tung auBerhalb der eng en Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlages unzulassig und strafbar. Das gilt besonders fOr Vervielfaltigungen, Obersetzun­gen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

© 1999 B.G.Teubner Stuttgart· Leipzig

Einbandgestaltung: Peter Pfitz, Stuttgart

Page 5: Starthilfe Thermodynamik ||

Vorwort

Die vorliegende Starthilfe richtet sich an Studierende an Universitiiten und Fach­hochschulen, die sich erstmalig mit Thermodynamik beschiiftigen. Die Ther­modynamik gehort zu den grundlegenden Ingenieurwissenschaften. Erfahrungs­gemaB zahlt sie zu jenen Fiichern, die dem Studenten hiiufig Startschwierigkeiten bereiten. Dieser Band soIl insbesondere den technisch orientierten Studenten den Ein­stieg erleichtern und ihnen die Grundlagen der Thermodynamik bis hin zur Anwendung der Erhaltungssiitze verstandlich erlautern. Werden diese Grund­lagen beherrscht, dann ist man in der Lage, sich weitere Anwendungen mit Hilfe der Vorlesung oder der Literatur zu erschlieBen. 1m Unterschied zu einem herkommlichen Lehrbuch, das eine umfassende und vollstiindige DarsteIlung des zu vermittelnden Lehrstoffes enthiilt, wird in der Starthilfe das erforderliche Grundlagenwissen knapp, aber fUr das Verstandnis ausfuhrlich genug erliiutert. Das vorliegende Buch ist damit auch als Nachschlagewerk und insbesondere zur Prufungsvorbereitung geeignet. Die weiterfUhrenden Anwendungen, wie z.B. das Zustandsverhalten der Diimpfe und der feuchten Luft, die zugeordneten Pro­zesse und die Grundlagen der Verbrennung, sind den im Literaturverzeichnis aufgefuhrten Lehrbuchern zu entnehmen, z.B. [Ba96, St92, E193, BK88]. Eine EinfUhrung in die Thermodynamik erfordert zuniichst die Definition und die Erkliirung der wichtigsten Begriffe. Die Behandlung der Prozesse ist an bestimmte Stoffe gebunden, deren Zustandsgleichungen bekannt sein mussen. Die Bereitstellung entsprechender Stoffgesetze fUr die ProzeBberechnung ist ein wichtiges Teilgebiet der Thermodynamik. Am Beispiel einfacher Systeme wer­den die Grundlagen hierfur zusammenfassend im Kapitel 2 vor den Hauptsiitzen behandelt. Fur das Verstiindnis dieses Kapitels sind Kenntnisse der Differential­und Integralrechnung fur Funktionen mit mehreren Variablen notwendig. Sind diese mathematischen Grundlagen noch nicht ausreichend bekannt, so werden dem Leser zuniichst die Abschnitte 2.1, 2.4 und 2.6 des Kapitels 2 empfohlen. Schwerpunkte der Starthilfe Thermodynamik sind die Behandlung der verschie­denen Energieformen, die Erhaltungssiitze, die Hauptsatze der Thermodynamik sowie das Bilanzieren von Systemen. Die Wissensvermittlung wird dabei von in­teressanten und wichtigen technischen Beispielen begleitet. Die Grundlagen der Energiewandlung und der ProzeBbewertung werden ausfUhrlich am Beispiel des Carnot-Kreisprozesses dargestellt.

Page 6: Starthilfe Thermodynamik ||

6 Vorwort

Die hier verwendeten Bezeichnungen fiir die physikalischen GraBen orientieren sich an den bewahrten Lehrbiichern der Thermodynamik und an den Empfeh­lungen der International Heat Transfer Conference. Die Autoren sind fUr Hinweise und Anregungen der Leser dankbar. Unser Dank gilt den Herren Prof.Dr.-Ing.habil. Walter Lilienblum, Fachhoch­schule Magdeburg, Dr.-Ing. Hartwig Boye und Dr.-Ing. Dietmar WeiB, beide Institut fUr Stramungstechnik und Thermodynamik der Otto-von-Guericke­Universitat Magdeburg, und Herrn Dr.rer.nat. Uwe Iben, Institut fUr Analy­sis und Numerik der Otto-von-Guericke-Universitat Magdeburg, die das Manu­skript kritisch durchgesehen haben und uns wert volle Anregungen und Hinweise gaben. SchlieBlich danken wir dem Teubner-Verlag, insbesondere Herrn J. WeiB, fiir die angenehme und sehr gute Zusammenarbeit.

Magdeburg, im Januar 1999 Hans Karl Iben und Jiirgen Schmidt

Page 7: Starthilfe Thermodynamik ||

Inhalt

Symbole und Einheiten

1 ThermodynamischQ Grundbegriffe 1.1 Gegenstand der Thermodynamik 1.2 Thermodynamische Systeme ... 1.3 Thermodynamisches Gleichgewicht 1.4 Zustand und ZustandsgroBen ... 1.5 Zustandsanderungen und Prozesse

2 Zustandsverhalten einfacher Systeme 2.1 Einstoffsysteme und p, v, T-Verhalten . 2.2 Die thermische Zustandsgleichung . 2.3 Die energetische Zustandsgleichung 2.4 Ideale Gase ............ . 2.5 Reale Gase . . . . . . . . . . . . . 2.6 Inkompressible und schwach kompressible Fluide 2.7 Mischungen idealer Gase . . . . . . . . . . . . . .

3 3.1 3.2

Thermodynamische Hauptsatze Das Energieerhaltungsprinzip . . Die Arbeit ............ .

9

11 11 12 13 15 18

19 19 24 25 29 34 36 38

40 40 42

3.2.1 Mechanische Arbeit und auBere Energien . 42 3.2.2 Arbeit und innere Energie 43 3.3 Die Warme . . . . . . . . . . . . . . . . . 47 3.4 Der erste Hauptsatz . . . . . . . . . . . . 48 3.4.1 Formulierung des erst en Hauptsatzes mit der inneren Energie 48 3.4.2 Formulierung des ersten Hauptsatzes mit der Enthalpie . . .. 49 3.4.3 Die Warme bei reversiblen Prozessen . . . . . . . . . . . . .. 51 3.4.4 Anwendung des erst en Hauptsatzes auf abgeschlossene Systeme 53 3.4.5 Das instationare Verhalten geschlossener Systeme 55 3.5 Der zweite Hauptsatz ...... 58 3.5.1 Das Prinzip der Irreversibilitat . 59 3.5.2 Entropie und zweiter Hauptsatz . 60 3.5.3 Die Entropie als ZustandsgroBe . 65

Page 8: Starthilfe Thermodynamik ||

8 Inhalt

3.5.4 Reversible und irreversible Zustandsanderungen in adiabaten Sy-

3.5.5 3.6

stemen ....................... . Die Dissipationsenergie. . . . . . . . . . . . . . . Fundamentalgleichungen und Maxwell-Relationen

4 Zustandsanderungen perfekter Gase 4.1 Elementare Zustandsanderungen 4.2 Poly trope Zustandsanderungen . 4.3 Berechnung der ZustandsgroBen . 4.4 Berechnung der ProzeBgroBen

5 Bilanzierung offener Systeme 5.1 Die Massenbilanz . 5.2 Die Energiebilanz ... 5.3 Die Entropiebilanz . . 5.4 Die technische Arbeit

6 6.1 6.2 6.3 6.4 6.5 6.6

7 7.1 7.2 7.3 7.3.1 7.3.2

Technische Anwendungen Adiabate Stromungsprozesse . Der Verdichter . . Die Gasturbine . . Die Wasserturbine Die Kreiselpumpe . Der Warmeiibertrager

Kreisprozesse und Energiewandlung Grundlagen der Kreisprozesse .... Moglichkeiten der Energieumwandlung Der Carnotsche KreisprozeB . . . . Die Warmekraftmaschine ..... Kaltemaschine und Warmepumpe .

Literatur

Sachregister

68 69 73

76 77 78 79 80

81 82 83 85 86

87 87 89 91 93 94 96

98 98

100 101 102 103

106

107

Page 9: Starthilfe Thermodynamik ||

Symbole und Einheiten

GroBenart Formelzeichen MaBeinheit Beziehungen zu I Basiseinheiten

FHiche A m2

Geschwindigkeit C mjs spezifische Warmekapazi- cP' Cv Jj(kgK) m2j(s2K) tat bei konstantem Druck und Volumen Durchmesser d m Energie E J=Nm kg m2/s2

spezifische Energie e J/kg m'2/s2

Kraft F, F N kgm/s2

freie Energie F J=Nm kgm2/s2

spezifische freie Energie f J/kg m2/s'2 Gibbs-Enthalpie G J=Nm kg m2/s2

spez. Gibbs-Enthalpie 9 J/kg m'2/s2 Erd beschleunigung 9 m/s2 Enthalpie H J = N m kgm2/s2

spezifische Enthalpie h J/kg m'2/s'2 elektrischer Strom Ie! A Warmed urchgangskoeff. k W/(m'2K) kg/(S3K) Boltzmann-Konstante kB J/K kgm2/(s2K) Masse M kg Drehmoment Md N m kgm'2/s2

Molmasse M kg/kmol •

Massenstrom M kg/s Molmenge N kmol Teilchenzahl n Loschmid t-Konstante NL l/kmol Druck p Pa = N/m2 kg/(ms2) Warme Q J =Nm kgm2/s2

spezifische Warme q J/kg m'2/s2 •

Warmestrom Q W kgm2/s3

Verdampfungsenthalpie r J/kg m'2/s2

Page 10: Starthilfe Thermodynamik ||

10 Symbole und Einheiten

Gr6Benart Formelzeichen MaBeinheit Beziehungen zu Basiseinheiten

Raumanteil Ti

spezielle Gaskonstante R J/(kgK) m2/(s2K)

universelle Gaskonstante R J/(kmoIK) kg m2/(K S2 kmol) elektrischer Widerstand Rei O=V/A kgm2/(s2 A2) Entropie S J/K kgm2/(s2K)

• Entropiestrom S J/(Ks) kgm2/(s3 K) spezifische Entropie S J/(kgK) m~ /(s~ K) Ortskoordinate Sk m Temperatur T K Zeit t s inn ere Energie U J=Nm kgm2/s2 spezifische inn ere Energie u J/kg m~/s~

elektrische Spannung Uel V=W/A kgm2/(s2A) Rohrumfang UR m Volumen V m3

spezifisches Volumen v m3/kg Molvolumen v m3/(kmol) Arbeit W J=Nm kgm2/s2 spezifische Arbeit w J/kg m2/s~

• Leistung W W = N m/s kgm2/s3 Massenanteil Yi Molanteil ih Realgasfaktor Z H6henkoordinate z m Volumenausdehnungskoeff. f3 l/K Spannungskoeffizient "f l/K Leistungsziffer 8 Wirkungsgrad 'f/ Temperatur -a °C Kompressibilitatskoeff. X l/Pa (ms~)/kg

Isentropenexponent x W armelei tkoeffizient A W/(mK) kgm/(s3 K) Dichte p kg/(m3) Dissipationsfunktion \II J kgm2/s2 Winkelgeschwindigkeit w l/s

Page 11: Starthilfe Thermodynamik ||

1 Thermodynamische Grundbegriffe

1.1 Gegenstand der Thermodynamik

Die Thermodynamik ist ein Teilgebiet der Physik. Sie entwickelte sich mit den Untersuchungen der Vorgange in den Warmekraftmaschinen, vor allem in der Dampfmaschine. Ais selbstandiges Wissensgebiet wurde sie durch die theore­tischen Arbeiten von N.L.S. Carnot (1824), die Untersuchungen zum Energie­erhaltungsprinzip und zum ersten Hauptsatz von J.R. Mayer (1842) und J.P. Joule (1848) sowie durch die Arbeiten zum zweiten Hauptsatz von R. Clausi­us (1850) und W. Thomson (1851, seit 1892 Lord Kelvin) begrundet und in der Folgezeit rasch ausgebaut. Heute gehart die Thermodynamik als allgemei­ne Energielehre zu den grundlegenden lngenieurwissenschaften. Sie besitzt eine groBe Bedeutung fUr viele Bereiche der Technik, aber auch der Chemie und der Biologie, in denen Energieumwandlungen eine Rolle spielen. Durch die Bewer­tung dieser Prozesse befahigt sie den lngenieur zum energiewirtschaftlichen und umweltbewuBten Denken und Handeln.

In der Thermodynamik werden die Phanomene der Energieumwandlung und Energieubertragung erklart. Daneben wird ein physikalisches Prinzip formu­liert, nach welchem entschieden werden kann, in welcher Richtung ein Vorgang ablauft. Beispielsweise bevorzugt die Natur die Umwandlung von nichtther­mischer in thermische Energie, ein Ausdruck des Prinz ips der lrreversibilitat. Weiterhin beschreibt die Thermodynamik die Systemzustande, ihre Anderung im Ergebnis von Energiewandlungs- und Energieubertragungsprozessen sowie die Gleichgewichtsbedingungen.

Gegenstand der vorliegenden 'Starthilfe Thermodynamik' ist eine EinfUhrung in die phanomenologische oder klassische Thermodynamik. 1m Unterschied zur atomar-statistischen Betrachtungsweise stutzt sich diese auf makroskopische, der Messung direkt zugangliche GraBen, wie z.B. die Temperatur und den Druck, die unter mikroskopischen Verhaltnissen nicht definiert sind. Die phano­menologische Thermodynamik kann keine Modelle zum Stoffverhalten bereit­stellen. Fur die Bestimmung der thermodynamischen Zustandsfunktionen und des Gleichgewichtsverhaltens werden deshalb MeBwerte benatigt.

Page 12: Starthilfe Thermodynamik ||

12 1 Thermodynamische Grundbegriffe

1.2 Thermodynamische Systeme

Eine thermodynamische Untersuchung fiihrt man an einem streng definierten endlich begrenzten Gebiet (Kontrollraum, Bilanzgebiet) bzw. an einer definier­ten abgegrenzten Stoffmenge (Masse) durch. Dieses Gebiet bezeichnet man als thermodynamisches System. AuBerhalb des vereinbarten Gebietes erstreckt sich die Umgebung. Das Gebiet ist durch seine Grenze von der Umgebung abgegrenzt. Dabei kann es sich urn eine materiell vorhandene oder eine gedachte Grenze handeln. Es k6nnen auch mehrere technische Einrichtungen, z.B. Ver­dichter mit Zwischenkiihlern, zu einem System bzw. Bilanzraum zusammen­gefaBt werden. Der Systemgrenze ordnet man haufig idealisierte Eigenschaften beziiglich ihrer Durchlassigkeit fiir Energie (Arbeit,Warme) und Materie zu und unterscheidet danach die Systeme.

Definition 1.1: Ein thermodynamisches System ist

• abgeschlossen oder isoliert, wenn es keine Wechselwirkung mit der Umgebung gibt,

• geschlossen, wenn es massedicht ist und uber die Grenze nur Energie in Form von Arbeit oder Wiirme ubertragen wird,

• offen, wenn uber die Grenze ein StojJtransport stattfindet,

• adiabat, wenn uber die Grenze keine Wiirme ubertragen wird (thermisch ideal isoliert) .

......... ..--.. .......... ..--..

Systemgrenze Systemgrenze

Bild 1 Geschlossenes System Bild 2 Offenes System

Ais Beispiel betrachten wir ein Gas in einem Zylinder, Bild 1 und Bild 2. Durch den Kolben ist ein Teil der Systemgrenze verschiebbar, und es kann Arbeit durch Verdichtung oder Entspannung verrichtet werden. Die Masse innerhalb eines geschlossenen Systems, Bild 1, ist konstant, wahrend

Page 13: Starthilfe Thermodynamik ||

1.3 Thermodynamisches Gleichgewicht 13

sie sich in Abhangigkeit des ein- und austretenden Stoffstromes bei einem of­fenen System, Bild 2, zeitlich andern kann. In den meisten Anwendungsfallen enthalten die betrachteten Systeme Fliissigkeiten oder Gase (Fluide). Sind in einem System die Zusammensetzung und die Eigenschaften ortlich konstant, so nennt man es homogen. Homogene Bereiche eines Systems bilden eine Phase.

Systeme beschreibt man durch physikalische GraBen, z.B. den Druck P, die Dichte p, das Volumen V, die Temperatur T, die Zahigkeit II. Die GroBe setzt sich aus dem Produkt von MaBzahl (Zahl) und MaBeinheit (Einheit) zusammen.

1.3 Thermodynamisches G leichgewicht

Zur Einfiihrung des Gleichgewichtsbegriffes betrachten wir zunachst das abge­schlossene Gesamtsystem im Bild 3, das durch einen verschiebbaren Kolben in die beiden Teilsysteme A und B getrennt wird. In jedem der beiden ge­schlossenen Teilsysteme kann zum Anfangszeitpunkt t = 0 eine ortliche Druck­und Temperaturverteilung vorliegen. ErfahrungsgemaB nehmen in jedem ab­geschlossenen thermodynamischen System der Druck und die Temperatur des Gases durch Ausgleichsvorgange nach hinreichend langer Zeit je einen konstan­ten Wert an. Dieser ortlich und zeitlich ausgeglichene Zustand heiBt Gleichge­wichtszustand. Ohne Einwirkung von auBen andert er sich nicht.

Definition 1.2: Ein geschlossenes thermodynamisches System befindet sich im Gleichgewichtszustand, wenn bei fehlender iiuj1erer Beeinftussung die den Zustand charakterisierenden Groj1en orts- und zeitunabhiingig sind.

Beide Teilsysteme befinden sich im thermodynamischen Gleichgewicht, wobei mechanisches und thermisches Gleichgewicht zu unterscheiden sind. Die Teilsysteme A und B im Bild 3 stehen im mechanischen Gleichgewicht, wenn die Krafte FA = AKPA und FB = AKPB auf beiden Seiten des Kolbens gleich

I 101-' , System A , 'System B, -----f-----------------------~-----k__------------I-------

'T FA , , FB T' L?~I~__ J L PBI B-'

Bild 3 Abgeschlossenes Gesamtsystem

sind (FA = FB). Da die Flache AK auf beiden Seiten des Kolbens die gleiche ist, gilt fUr die Driicke in den Systemen A und B die Beziehung PA = ~ = PB. Der Druck ist der Quotient aus Kraft Fund Flache A, wobei F senkrecht auf A wirkt. Er ist eine meBbare skalare GroBe. Die MaBeinheit des Druckes ist: [P] = 1 N/m2 = 1Pa (Pascal).

Page 14: Starthilfe Thermodynamik ||

14 1 Thermodynamische Grundbegriffe

Von statistischen Gesichtspunkten aus ist die Kraft F die Resultierende der Impulskrafte, die die Molekiile beim Auftreffen auf eine Flache verursachen. Gleichzeitig ist der Mittelwert der kinetischen Energie Ekin,Mol der ungeordneten Molekularbewegung proportional der Temperatur T. In der klassischen Thermodynamik definiert man die Temperatur mittels des thermischen Gleichgewichtes als makroskopisch meBbare GraBe. Haben die Systeme A und B unterschiedliche Temperaturen, so lauft bei einem warmedurchlassigen (diathermen) Kolben, Bild 3, ein AusgleichsprozeB solange ab, bis sich in beiden Teilsystemen die gleiche Temperatur eingestellt hat.

Definition 1.3: Zwei Systeme befinden sich im thermischen Gleichge­wicht, wenn ihre Temperaturen iibereinstimmen.

Satz 1.1 N ullter Hauptsatz: Immer dann, wenn sich zwei Systeme mit einem dritten System im thermischen Gleichgewicht befinden, sind sie auch untereinander im thermischen Gleichgewicht.

Nach dem nullten Hauptsatz kann das dritte System als MeBgerat (Thermo­meter) dienen. Mit ihm stellt man fest, ob die beiden anderen Systeme gleiche Temperatur haben. Zur Temperaturmessung sind aIle temperaturabhangigen physikalischen Eigenschaften der Karper geeignet, wie z.B. die Volumenausdeh­nung oder der elektrische Widerstand. Ais Fixpunkt der thermodynamischen Temperatur T (vergl. Abschnitt 3.5.2), die mit der Temperatur eines idealen Gasthermometers identisch ist, hat man auf der 10. Generalkonferenz fiir MaBe und Gewichte in Paris im Jahre 1954 den Tripelpunkt des Wassers vereinbart und ihm die Temperatur Ttr = 273.16K zugeordnet1 . Am Tripelpunkt stehen die feste, fiiissige und gasfOrmige Phase miteinander im Gleichgewicht. Die MaBeinheit der Temperatur ist: [T] = 1 K (Kelvin). Die Temperatur ist eine skalare GrOBe. Haufig benutzt man auch die Celsius-Skala. Die Beziehung zur Umrechnung der Temperaturen beider Skalen lautet:

f) = T - 273.15 K in °C bzw. !:l.T =!:l.f) und dT = df) in K. (1.1)

Die Temperatur und der Druck sind Indikatoren des thermischen und mecha­nischen Gleichgewichtes. Das stofHiche Gleichgewicht, auf das hier nicht einge­gangen wird, erfordert die Gleichheit der chemischen Potentiale.

1 Die Festlegung ist historisch bedingt. Sie dient der Anpassung an die Celsius-Skala und gewiihrleistet, daB auf beiden Skalen die Differenz zwischen Schmelzpunkt (O°C) und Siede­punkt (100°C) des Wassers bei 0.101325 MPa 100 Einheiten in Kelvin entspricht.

Page 15: Starthilfe Thermodynamik ||

1.4 Zustand und ZustandsgraBen 15

In einem hinreichend kleinen System kann man unter der Voraussetzung des lokalen Gleichgewichtes lokale Werte der Temperatur und des Druckes fest­legen. Das System muB aber ausreichend viele Molekiile fiir eine statistische Mittelwertbildung besitzen, und die Zustandsanderung darf nicht zu schnell ab­laufen, damit die Maxwellsche Geschwindigkeitsverteilung der Molekiile nicht gestart ist. Druck und Temperatur kannen in diesem Fall orts- und zeitverander­lich sein. Man spricht dann im Unterschied zu einem geschlossenen System bzw. einer Phase von einem Kontinuum2 , in dem Druck p(x, y, z, t) und Tempera­tur T(x, y, z, t) den Charakter von FeldgraBen haben. Druck und Temperatur sind damit unter Verwendung des lokalen Gleichgewichtes auch fUr geschlossene Systeme im Nichtgleichgewicht definiert. Sie sind dann ortsabhiingig. In offenen Systemen, als Beispiel betrachten wir die Stramung in einer Rohrlei­tung, kannen sich Druck, Temperatur und Dichte entlang einer Ortskoordinate zwischen Ein- und Austritt andern. Senkrecht zu dieser Koordinate setzt man als Ausdruck des thermodynamischen Gleichgewichtes konstante bzw. nahe­rungsweise gemittelte GraBen in jedem Querschnitt voraus. Haufig fordert man bei der Analyse offener Systeme nur den Gleichgewichtszustand im Ein- und Austrittsquerschnitt.

1.4 Zustand und ZustandsgroBen

Jedes System besitzt physikalische Eigenschaften, die durch GraBen wie den Druck, die Temperatur, das Volumen usw. naher beschrieben werden.

Definition 1.4: Der Zustand eines Systems wird durch physikalische Groften festgelegt, die wesentliche Eigenschaften des Systems beschreiben und seine Reproduzierbarkeit ermoglichen. 1m Gleichgewicht ist fur die Zustands­beschreibung eine minim ale Zahl makroskopischer, meftbarer Groften ausrei­chend. Groften, die einer solchen Beschreibung des Systems dienen und von der Pro­zeftfuhrung (Abschnitt 1.5) unabhiingig sind, bezeichnet man als Zustands­graBen.

AIle GraBen, die den mechanischen oder auBeren Zustand eines Systems cha­rakterisieren, sind auBere ZustandsgraBen. Beispiele hierfiir sind die Lageko­ordinaten und die Geschwindigkeit des Systemschwerpunktes gegeniiber einem Koordinatensystem. Die inneren ZustandsgraBen beschreiben die Eigenschaft der Materie innerhalb

2Die Kontinuumsbetrachtung wird unter anderem in der Thermodynamik irreversibler Prozesse und in der Stromungsmechanik genutzt.

Page 16: Starthilfe Thermodynamik ||

16 1 Thermodynamische Grundbegriffe

des Systems. Druck, Temperatur, Dichte bzw. Volumen bezeichnen wir dabei als thermische ZustandsgraBen. Findet zwischen einem System und dessen Umge­bung ein Energietransport statt, bei dem die iiuBeren Energien (kinetische und potentieIle Energie des Systemschwerpunktes) konstant bleiben, so iindert sich die innere Energie U des Systems. Die innere Energie und die noch zu definieren­den GraBen wie die Enthalpie H und die Entropie S bilden die energetischen (kalorischen) ZustandsgraBen. Die ZustandsgraBen lassen sich weiterhin in intensive und extensive Zustands­graBen einteilen. Intensive ZustandsgraBen sind z.B. p und T. Sie sind von der Masse (GraBe des Systems) unabhangig. Die extensiven ZustandsgraBen z.B. V, U, H und S, die wir durch groBe Buchstaben kennzeichnen, sind proportional zur Systemmasse Moder der Molmenge (Stoffmenge) N. Die Molmenge orien­tiert sich an der Teilchenzahl. Ein Mol eines jeden Stoffes enthiilt die gleiche Anzahl von Teilchen (Abschnitt 2.4). Das Verhaltnis von Masse M zur Mol­menge N ist die Molmasse

- M M = N in kg/kmol. (1.2)

Wird eine extensive ZustandsgraBe durch die Masse des Systems dividiert, so ergibt sich eine spezifische ZustandsgraBe. Diese ist wiederum eine intensive ZustandsgraBe. Beispiele sind das spezifische Volumen v = V / M und die spezifi­sche innere Energie u = U / M. Die spezifischen GraBen kennzeichnen wir durch kleine Buchstaben. Neben den spezifischen GraBen benutzt man, insbesondere bei Stoffwandlungs­prozessen und chemischen Reaktionen, molare GraBen. Diese entstehen analog aus den extensiven GraBen durch Bezug auf die Molmenge. Sie sind wiederum intensive GraBen. Molare GraBen kennzeichnen wir durch Kleinbuchstaben un­ter Verwendung des Symbols - (Tilde). AIlgemein gilt fur die spezifische und die mol are GraBe einer extensiven ZustandsgrOBe Zu

Zu Zu = M und

_ Zu -zU=N=Mzu. (1.3)

Fur ein einkomponentiges Gesamtsystem ergibt sich die extensive Zustands­graBe Zu additiv aus den ZustandsgraBen Zui der Teilsysteme

(1.4)

Diese Eigenschaft ist fUr intensive GraBen nicht giiltig. 1m FaIle eines Zweipha­sensystems erhalten wir

M = Ml + M2 , Zu = Ml Zul + M2 Zu2 ,

Zu = ~ = Zul + (Zu2 - zud: . (1.5)

Page 17: Starthilfe Thermodynamik ||

1.4 Zustand und ZustandsgroBen 17

Ein ausgewahlter Zustand, der in der Thermodynamik haufig zur Angabe von Fluideigenschaften benutzt wird, ist der Normzustand.

Definition 1.5: Der Normzustand ist durch die Temperatur Tn = 273.15 K und den Druck Pn = 1.01325 . 105 Pa festgelegt.

Beispiel!: In dem Dampfkessel einer Farberei mit dem Volumen V = 26 m3 befinden sich siedendes Wasser und gesattigter Dampf mit der Gesamtmasse M = 3500 kg. Die Temperatur dieses im Gleichgewicht stehenden Zweiphasensystems betragt bei p = 1 MPa Absolutdruck nach der Dampftafel [SG89] Ts = 453.03 K. Weiterhin entnehmen wir aus dieser fUr den vorgegebenen Druck die spezifischen

Volumina fUr Fhissigkeit und Dampf, v' = 1.1273· 10-3 m3/kg und v" = Dampf V" 0.1946 m3/kg. Gesucht werden die Mas- v sen M' und M" der beiden Phasen und Flussigkeit - --V' die Volumina V' und V".

Bild 4 Dampfkessel mit siedendem Wasser und gesattigtem Dampf

Losung: Die gesamte Masse M = M' +M" ist gleich der Summe der einzelnen Massen (Fliissigkeit und Dampf) im Dampfkessel. Ebenso gilt fUr die Summe der Teilvolumina V = V' + V". In dieser Beziehung ersetzen wir mittels des Zusammenhangs V = v M das Volumen V durch das spezifische Volumen v und die Masse M. Es folgt

V = v M = v'M' + v" M" . (1.6)

In Gl.{1.6) sind M' und M" die Unbekannten. Mit M' = M - M" erhalten wir

V 'M (" ')M" =v + v -v

oder nach der Dampfmasse M" umgestellt:

M" = V - v'M = 26 - 1.1273 . 10-3 . 3500 v" - v' 0.1946 - 1.1273.10-3 = 114 kg .

Es folgt nun sofort die Masse der Fliissigkeit zu M' = M - M" = 3386 kg. Fiir die Volumina des Dampfes und der Fliissigkeit ergeben sich:

V" = v" M" = 22.18m3 und V' = v'M' = 3.82m3 . •

Page 18: Starthilfe Thermodynamik ||

18 1 Thermodynamische Grundbegriffe

1.5 Zustandsanderungen und Prozesse

Ein geschlossenes thermodynamisches System trete in Wechselwirkung (Volu­menanderung, Energietransport) mit seiner Umgebung. Befindet sich das System zum Zeitpunkt tl im Zustand 1 (thermodynamisches Gleichgewicht) und zu einem spateren Zeitpunkt t2 im Zustand 2 (thermody­namischen Gleichgewicht), der aber von 1 verschieden ist, dann hat eine Zu­standsanderung stattgefunden. Der Zustandsanderung liegt ein ProzeB zu­grunde. Er gibt nahere Auskunft dariiber, wie der Zustand 2 aus dem Zustand 1 entstanden ist. Die Beschreibung eines Prozesses erfordert neben der Kenntnis der Zustandsanderung auch die Kenntnis der Wechselwirkung zwischen dem System und seiner Umgebung. Der Begriff ProzeB ist dabei umfassender als der Begriff Zustandsanderung. Eine bestimmte Zustandsanderung kann durch unterschiedliche Prozesse realisiert werden. Hat ein System einen bestimmten Zustand eingenommen, so sind die ZustandsgraBen unabhangig davon, wie das System diesen Zustand erreicht hat. ZustandsgraBen sind damit unabhangig vom ProzeBverlauf (wegunabhangig). Demgegeniiber sind die den ProzeB kenn­zeichnenden GraBen wie Arbeit und Warme abhangig von der ProzeBfiihrung. Sie bezeichnet man als ProzeBgroBen.

Definition 1.6: Kann man ein System, in dem ein Prozeft vom Zustand 1 zum Zustand 2 abgelaufen ist, wieder in seinen A usgangszustand 1 iiberfiihren, ohne daft eine A nderung in der Umgebung zUrUckbleibt, so nennt man den Prozeft reversibel oder umkehrbar. 1st aber der Ausgangszustand 1 des Sy­stems nur mit einer Anderung in der Umgebung wiederherstellbar, so heiftt der Prozeft irreversibel oder nicht umkehrbar.

1m allgemeinen wird das System wahrend eines Prozesses keine Gleichgewichts­zustande durchlaufen. So entsteht z.B. beim Erhitzen von Wasser in einem Behalter eine Temperaturverteilung. Nach Beendigung des Heizvorganges lauft ein AusgleichsprozeB ab, bis sich eine einheitliche Temperatur im Wasser und damit das Gleichgewicht eingestellt hat. Die Zustandsanderung vollzieht sich bei diesem Ausgleichsvorgang nichtstatisch. Bei hinreichend langsamer Pro­zeBfiihrung wird das System hingegen eine Polge von Gleichgewichtszustanden durchlaufen. Die Zustandsanderung ist dann quasistatisch3 .

Erreicht das System nach Durchlaufen einer Polge von Zustandsanderungen wieder den Anfangszustand, so spricht man von einem KreisprozeB.

3 Beispielsweise kann die Zustandsanderung in Kolbenverdichtern quasistatisch beschrieben werden, da sich Druckanderungen mit Schallgeschwindigkeit ausgleichen, die Verdichtungsge­schwindigkeit (Kolbengeschwindigkeit) aber urn ein bis zwei Zehnerpotenzen niedriger ist als die Schallgeschwindigkeit.

Page 19: Starthilfe Thermodynamik ||

2 Zustandsverhalten einfacher Systeme 19

Alle realen Prozesse verlaufen nichtstatisch und irreversibel. Quasistatische Pro­zesse sind ideale Prozesse; sie konnen reversibel, aber auch irreversibel verlaufen. Reversible Prozesse sind idealisierte Grenzfalle der realen Prozesse und erfor­dern stets quasistatische Zustandsanderungen. Die irreversiblen Prozesse sind immer auch dissipative Prozesse (vergl. Abschnitt 3.5.5). Zu den irreversiblen Prozessen gehoren die Ausgleichsprozesse (Druck-,Temperatur- und Konzentra­tionsausgleich), die stets nichtstatischen Charakter haben. Dissipative Prozesse konnen in bestimmten Fallen auch quasistatisch betrachtet werden. 1m Fall der Reibung werden Arbeit bzw. auBere Energien in nichtumkehrbarer Weise in innere Energie umgewandelt, wobei das System durchaus durch Gleichgewichts­werte des Druckes und der Temperatur beschrieben werden kann. Prozesse, die in geschlossenen System en zu einer Zustandsanderung fUhren, ver­laufen stets in Abhangigkeit der Zeit, d.h., sie sind instationar. Ein ProzeB kann in einem geschlossenen System aber auch stationar (Druck und Tem­peratur sind zeitlich konstant) ablaufen. Dieser Fall liegt z.B. vor, wenn dem Gas in einem geschlossenen Zylinder (ohne beweglichen Kolben, Bild 10) die

• • Rtihrerleistung WWelle zugefUhrt und gleichzeitig durch den Warmest rom Q ein entsprechender Energiestrom wieder vollstandig abgefUhrt wird. Das Gas erfahrt in diesem Fall keine Zustandsanderung. Andert sich der Zustand des Systems nicht mehr mit der Zeit, so ist der Beharrungszustand oder der stat i­onare Zustand erreicht. 1m U nterschied zu einem geschlossenen System andern sich bei einem offenen System die ZustandsgroBen nicht nur in Abhangigkeit der Zeit, sondern auch entlang der Ortskoordinate Sk, die den Ein- und Austrittsquerschnitt des Bi­lanzgebietes verbindet. 1m quasistatischen ProzeB sind dann die ZustandsgroBen p, v, T, u Funktionen von Sk, t. Bei einem stationaren ProzeB sind die Wechsel­wirkungen mit der Umgebung in Form von Arbeit, Warme und Stoff transport zeitunabhangig. Das gilt ebenso fUr die intensiven ZustandsgroBen zu, so daB 8Zu(Sk' t)/8t = 0 fUr jedes (\I) Zu E [p, v, T, U,··· J gilt.

2 Zustandsverhalten einfacher Systeme

2.1 Einstoffsysteme und p, v, T-Verhalten

Das Verhalten thermodynamischer Systeme ist in Abhangigkeit von ihrer Be­schaffenheit durch eine entsprechende Anzahl von ZustandsgroBen beschreibbar. ErfahrungsgemaB sind diese jedoch nicht immer unabhangig voneinander. Die

Page 20: Starthilfe Thermodynamik ||

20 2 Zustandsverhalten einfacher Systeme

Anzahl der frei wahlbaren GroBen, die den Zustand eines Systems eindeutig fest­legen, bezeichnet man als Freiheitsgrade eines Systems. Besonders iibersichtlich sind die Verhaltnisse im thermodynamischen Gleichgewicht sogenannter einfa­cher Systeme, auf die wir uns in den vorliegenden Darstellungen beschranken.

Definition 2.1: Thermodynamisch einfache Systeme sind homogene Systeme, die aus reinen Stoffen ( meist Case und Fliissigkeiten) bestehen und in denen die Wirkung auflerer Krafte (magnetische, elektrische und Oberftachenkrafte) vernachlassigbar ist.

Der Zustand eines einfachen Systems der Masse M wird erfahrungsgemaB ein­deutig durch zwei unabhangige intensive ZustandsgroBen festgelegt. Die beiden ZustandsgroBen konnen die Temperatur und der Druck sein. Mit ihnen lassen sich thermodynamische Gleichgewichtszustande identifizieren und reproduzie­ren. Beispielsweise gilt fUr das spezifische Volumen eines einfachen Systems v = v(p, T). Das thermische Verhalten reiner Stoffe, die in den Aggregatzustanden (Pha­sen) fest, fliissig und gas- bzw. dampfformig1 auftreten konnen, ist damit im p, v, T-Raum eindeutig beschreibbar. 1m Bild 5 ist die thermische Zustands­flache p = p( v, T) eines reinen Stoffes, z.B. Kohlendioxid CO2 , iiber der T, v­Ebene prinzipiell aufgetragen. Wir betrachten eine isobare Warmezufuhr von 1-+6, um die einzelnen Phasen und ihre Ubergange kennenzulernen. Den Ubergang 2-+3 von der festen Phase in die fliissige Phase nennt man Schmelzen. Der umgekehrte Vorgang ist das Erstarren. Den Ubergang 4-+5 von der fliissigen Phase in die gasformige Phase bezeichnet man als Verdampfen. Der umgekehrte Vorgang ist das Verfliissigen oder Kondensieren. Zwischen dem Festkorper und der Fliissigkeit liegt das Schmelzgebiet. Beide Phasen existieren hier bei gleichem Druck und gleicher Temperatur nebenein­ander im thermodynamischen Gleichgewicht. Das Schmelzgebiet wird durch die Schmelzlinie und die Erstarrungslinie begrenzt. Die Darstellung im Bild 5 gilt streng genommen nicht fiir Wasser, da die Schmelzdruckkurve von Wasser im Unterschied zu den meisten reinen Stoffen einen negativen Anstieg besitzt. Die­ser Anstieg steht in Verbindung mit der Anomalie des Wassers beziiglich des spezifischen Volumens. Der Schmelzvorgang vollzieht sich unter Warmezufuhr. 1m Punkt 3 ist der Festkorper vollstandig geschmolzen. Durch weitere Warmezufuhr bei konstan­tem Druck erhOht sich die Temperatur der Fliissigkeit (3-+4), bis im Punkt 4 die

1 In der Nlihe ihrer Verfliissigung bezeichnet man Gase auch als Dampfe.

Page 21: Starthilfe Thermodynamik ||

2.1 Einstoffsysteme und p, v, T-Verhalten 21

Verdampfungslinie (auch Siedelinie genannt) erreicht wird. Unter Warmezu­fuhr beginnt jetzt die Fliissigkeit zu verdampfen. Dabei bleibt wie im Schmelz­gebiet die Temperatur solange konstant, bis im Punkt 5 die gesamte Flussigkeit

SI Schmelzlinie

EI Erstarrungslinie VI Verdampfungslinie

cV

~ ~ ~ ~ E {

,

M Pier ,

KI Kondensationslinie TI Tripellinie

Tripelpunkt kritischer Punkt

tr

Bild 5 p, v, T-Flache eines reinen Stoffes

verdampft ist. Man nennt diesen Zustand trocken gesattigten Dampf oder Satt­dampf. Das Nafldampfgebiet zwischen den Punkten 4 und 5 ist ein Zwei­phasengebiet, in dem gesattigter Dampf und siedende Flussigkeit bei konstan­tern Druck und konstanter Temperatur nebeneinander im thermodynamischen Gleichgewicht existieren. Es wird durch die Verdampfungslinie und durch die Kondensationslinie (auch Taulinie genannt) begrenzt. 1m Punkt 5 fiihrt eine Warmezufuhr (5 --t 6) wieder zu einem Temperaturanstieg. Der Zustand des Dampfes wird dann als uberhitzter Dampf oder HeiBdampf bezeichnet. Bei relativ niedrigem Druck schneiden sich Sublimationsdruckkurve, Schmelz­druckkurve und Dampfdruckkurve im Tripelpunkt tr. In diesem Punkt koexi­stieren aIle drei Phasen. Der Tripelpunkt, in dem Eis, Flussigkeit und Dampf vorliegen, liegt fur CO2 bei Ttr = 216.59 K und Ptr = 518 kPa sowie fur Wasser bei Ttr = 273.16 K und Ptr = 611.66 Pa. Ausgehend von der fest en Phase verfolgen wir jetzt die isobare Zustandsande­rung von 8--t 11 bei einem Druck P mit 0 < P < Ptr unter Warmezufuhr. 1m

Page 22: Starthilfe Thermodynamik ||

22 2 Zustandsverhalten einfacher Systeme

Punkt 9 wird die Sublimationslinie erreicht. Der Festkarper schmilzt hier nicht, sondern er verdampft. Man nennt den Ubergang vom Festkarper in die Gasphase Sublimation und die Umkehrung Desublimation. 1m Sublimationsgebiet existieren Festkarper und Dampf bei konstantem Druck und konstanter Temperatur nebeneinander. 1m Punkt 10 ist der Festkarper vollstandig verdampft. Eine weitere Warmezufuhr laBt die Temperatur der Gas­phase bis Punkt 11 wieder ansteigen. Verdampfungs- und Kondensationslinie treffen im kritischen Punkt kr aufein­ander. AIle Eigenschaften, z.B. die Dichte und der Brechungsindex, der Fliissig­keit und des Dampfes gleichen sich mit Annaherung an den kritischen Punkt einander an. Die kritischen Werte betragen fUr CO2 : Pkr = 7.384 MPa, T kr = 304.2 K, Vkr = 2.156 m3/kg und die fUr Wasser: Pkr = 22.064 MPa, Tkr = 647.14 K, Vkr = 3.106.10-3 m3/kg. 1m kritischen Punkt haben Druck und Tem­peratur, bei den en Fliissigkeit und Dampf koexistieren kannen, die maximalen Werte. Bei Driicken oberhalb des kritischen Druckes (p > Pkr) beobachtet man eine Besonderheit. Eine isobare Zustandsanderung von 13-+14 fiihrt aus dem Fliissigkeitsgebiet in das fluide Gebiet, ohne eine Phasenumwandlung zu durch­laufen. Diese Zustandsanderung wird in den Benson-Kesseln von Kraftwerken genutzt. Durch eine isotherme Expansion von 14 -+ 6 ist der gleiche Dampfzu­stand wie im Fall der Zustandsanderung von 1 -+ 6 erreichbar. Ein Gas (iiberhitzter Dampf) ist durch isotherme Kompression nur verfliissig­bar, wenn seine Temperatur T kleiner als die kritische Temperatur Tkr ist. In jeder der betrachteten festen, fliissigen und gasfarmigen Phasen ist im Fall ei­nes einfachen Systems der Zustand durch zwei frei wahlbare intensive Zustands­graBen Zul, Zu2 (z.B. p, T) festgelegt, die die unabhangigen Variablen bilden. AIle weiteren intensiven GraBen bilden Zustandsfunktionen Zui = Zui(Zub Zu2) , die unabhangig davon sind, wie das System in diesen Zustand gelangt. Bezugneh­mend auf den durch die thermodynamischen Koordinaten Zul und Zu2 gebildeten Raum2 spricht man von einer Wegunabhangigkeit der ZustandsgraBen zui.

Da sich abhangige und unabhangige Variable beliebig vertauschen lassen, sind aIle ZustandsgraBen unabhangig von der ProzeBfUhrung (wegunabhangig). Die ZustandsgraBe Zui besitzt damit ein tot ales oder voIlstandiges Differential

( ) 8Zui 8zui dZui Zul, Zu2 = -8 dZu1 + -8 dZu2 ,

Zul Zu2 V i ~ 3, (2.1)

2Fiir nichtreagierende Systeme, die aus K Komponenten und P Phasen bestehen, ist die Anzahl der Freiheitsgrade F mit der Gibbsschen Phasenregel F = K - P + 2 bestimmbar. Ein aus einem reinen Stoff (K = 1) gebildetes System, in dem eine Phasenumwandlung z.B. Schmelzen oder Verdampfen (P = 2) ablauft, besitzt nur einen Freiheitsgrad, ausgedriickt durch die Schmelz- oder die Siededruckkurve Ps = Ps(T). 1st die Siedetemperatur gegeben, so liegt der Siededruck (Verdampfungsdruck) fest oder umgekehrt.

Page 23: Starthilfe Thermodynamik ||

2.1 Einstoffsysteme und p, v, T-Verhalten

und es gilt die Integrabilitatsbedingung

82zui

8zu1 8zu2

Andererseits ist das Integral

23

(2.2)

(2.3)

eines totalen Differentials nur yom Anfangszustand ZuiA und Endzustand ZuiE

der Zustandsanderung abhangig. 1st der Integrationsweg wie im Fall eines Kreisprozesses eine einfache geschlossene Kurve, so ist f dZui = o. Fur die Beschreibung einfacher thermodynamischer Systeme verwendet man ublicherweise den Druck p in Pa, das spezifische Volumen v in m3/kg, die Tem­peratur T in K und die spezifische innere Energie u in J /kg. Wahlt man als unabhangige Variable T und v, dann mussen fUr p und u entsprechende Be­rechnungsgleichungen existieren. Der funktionelle Zusammenhang

p = p(T,v), (2.4)

der ausschlieBlich thermische ZustandsgroBen enthalt, wird als thermische Zu­standsgleichung und die Beziehung

u = u(T,v) (2.5)

als energetische (kalorische) Zustandsgleichung bezeichnet. Fur die zweckmaBige Systembeschreibung in verschiedenen Anwendungsfallen hat man als weitere ZustandsgroEen

die Enthalpie H = U +pV 1

das Differential der Entropie dS = T (dU + p dV)

die freie Energie F = U - T S

die freie bzw. Gibbs-Enthalpie G = H - T S

inJ,

inJ/K,

inJ,

inJ

(2.6)

eingefUhrt. Mit ihnen lassen sich weitere Zustandsgleichungen formulieren. Da in der klassischen Thermodynamik keine Aussagen zur Struktur und zum Verhalten der Materie getroffen werden, muE man die Zustandsgleichungen der jeweiligen Stoffe experimentell bestimmen. Das trifft ebenso fUr weitere Stoffei­genschaften zu, wie den Brechungsindex, die Viskositat oder die Warmeleitfahig­keit. Hinweis: Der mit der Differentialrechnung weniger vertraute Leser kann beim erst en Durcharbeiten die folgenden Abschnitte 2.2 und 2.3 uberspringen und sich im Abschnitt 2.5 dem Teil ideale Flussigkeiten zuwenden. Das ermoglicht einen schnellen Einstieg in die Hauptsatze der Thermodynamik, fUr deren An­wendung die Kenntnisse des Zustandsverhaltens benotigt werden.

Page 24: Starthilfe Thermodynamik ||

24 2 Zustandsverhalten einfacher Systeme

2.2 Die thermische Zustandsgleichung

Die thermische Zustandsgl.(2.4) einfacher Stoffe, bzw. ihre implizite Form f(p, v, T) = 0, sei eine in dem p, T-Bereich

Br = {p, T I Pmin :S p :S Pmax, Tmin :S T :S Tmax} (2.7)

definierte Funktion mit stetigen partiellen Ableitungen bis mindestens zweiter Ordnung. Sie besitzt die drei expliziten Darstellungen:

p = p(v, T), v = v(p, T), und T = T(p, v) (2.8)

mit den totalen Differentialen

op op dp(v, T) = ov dv + aTdT ,

oT aT dT(p, v) = op dp + ov dv ,

ov ov dv(p, T) = op dp + aTdT ,

(2.9)

wobei die partiellen Ableitungen nicht unabhangig voneinander sind. Ersetzen wir z.B. in der erst en Gleichung (2.9) das Differential dv durch die zweite Glei­chung, so erhalten wir

d ( T) = op(v, T) (ov(p, T) dT ov(p, T)d) op(v, T)dT p v, ov aT + op P + aT

= op(v,T)ov(p,T)d (OP(v,T)ov(P,T) OP(v,T))dT ov op p+ ov aT + aT .

Aus dem Vergleich beider Seiten der Gl.(2.10) folgen die Beziehungen:

und

op(v, T) _ov-,(::-p,_T-'..) = 1 ov op

op(v, T) ov(p, T)

ov aT

op(v, T)

aT

(2.10)

(2.11)

(2.12)

Zwei weitere zu Gl.(2.11) analoge Zusammenhange ergeben sich durch zyklisches Vertauschen der Variablen zu

op(v, T) aT(p, v) = 1 aT op

und ov(p, T) aT(p, v)

aT ov =1. (2.13)

Page 25: Starthilfe Thermodynamik ||

2.3 Die energetische Zustandsgleichung 25

Aus diesen Beziehungen folgen direkt

op(v, T) ov(p, T) oT(p, v) _ -1 ov oT op - ,

op(v, T) aT(p, v) ov(p, T) = -1 (2.14) aT ov op .

Fiir die Beschreibung des thermischen Zustandsverhaltens ist die Kenntnis der unabhiingigen partiellen Ableitungen in Gl.(2.9) notwendig. Die diesen entspre­chenden physikalisch relevant en Gri:iBen sind der

iso bare Volumenausdehnungskoeffizient:

isotherme Kompressibilitatskoeffizient:

isochore Spannungskoeffizient:

(J = .!. ov(p, T) v oT '

1 ov(p, T) X- --- v op ,

1 op(v, T) 'Y=p aT .

Dnter Beriicksichtigung der Gln.(2.14), (2.11) und (2.13) erhiilt man

1 ov(p, T) 1 1 op(v, T) - p- --1 v op 1. {Jv(p,T) P aT - ,

v 8T

womit die Koeffizienten nicht unabhiingig sind. Es gilt

{J=p'YX·

(2.15)

(2.16)

(2.17)

(2.18)

Experimentell sind damit zwei Koeffizienten fiir das jeweilige Stoffsystem zu bestimmen. Beispielweise miBt man fiir Fliissigkeiten (J und X und berechnet nach Gl.(2.18) den schwierig meBbaren Spannungskoeffizienten 'Y. Betrachten wir eine Zustandsiinderung, bei der sich (J, X und 'Y in BT nur wenig iindern, so kann man die Funktionen durch Konstanten ersetzen.

2.3 Die energetische Zustandsgleichung

Die Beziehung u = u(T, v) mit dem zugehi:irigen totalen Differential

ou ou du(T, v) = aT dT + ov dv (2.19)

haben wir als energetische (kalorische) Zustandsgleichung eingefiihrt. Analog sind aIle weiteren energetischen Gri:iBen h, s, j, 9 nach Gl. (2.6) in Abhiingigkeit von zwei Zustandsgri:iBen darstellbar, z.B. die spezifische Enthalpie

h(T, v) = u(T, v) + v p(T, v) . (2.20)

Page 26: Starthilfe Thermodynamik ||

26 2 Zustandsverhalten einfacher Systeme

Die zweckmafiige Wahl der betreffenden energetischen GroBe und der un­abhangigen Variablen ist von der jeweiligen Aufgabenstellung und der dabei auftretenden Zustandsanderung abhangig. Fur die Enthalpie ist die Darstellung in Abhangigkeit von P und T

8h 8h dh(T,p) = aTdT + 8p dp (2.21)

ublich. Die partiellen Ableitungen nach der Temperatur in den Gln.(2.19) und (2.21) sind von besonderer Bedeutung. Sie werden als

spezifische Warmekapazitat bei konstantem Volumen

und als

spezifische Warmekapazitat bei konstantem Druck

8u ev(T, v) = aT (2.22)

8h Cp(p,T) = aT (2.23)

bezeichnet. Die spezifischen Warmekapazitaten sind wie die anderen Diffe­rentialquotienten in den Gln.(2.19) und (2.21) experimentell zu bestimmen. Mit der inneren Energie und der Enthalpie stehen damit zwei energetische Zu­standsgroBen zur VerfUgung, die sich bei isochoren (v = VI = const) bzw. isobaren (p = PI = const) Prozessen

nur in Abhangigkeit der Temperatur andern. Fur die Integration benotigen wir die funk­tionellen Abhangigkeiten der spezifischen Warmekapazitaten von der Temperatur, die im Bild 6 prinzipiell dargestellt sind. Bei der Integration der Gln.(2.24) nutzen wir neb en vorgegebenen funktionellen Abhangigkeiten

(2.24)

T) T2 T Bild 6 Temperaturabhangigkeit

von Cp, c"

fUr Cp(T, pd und Cv(T, pd auch den integralen Mittelwert der Warmekapazitaten

(2.25)

im Temperaturintervall von Tl bis T2 in Kelvin oder von 'lJ1 bis 'lJ2 in Grad Celsius. Der Mittelwert in Gl.(2.25) hangt von zwei veranderlichen Tempera­turgrenzen T1, T2 abo Diese Abhangigkeit laBt sich auf eine reduzieren, wenn wir

Page 27: Starthilfe Thermodynamik ||

2.3 Die energetische Zustandsgleichung 27

den Mittelwert in Gl.(2.25) durch die Differenz zweier Mittelwerte, die auf die gleiche Temperatur bezogen sind, ersetzen. Haufig wahlt man als Bezugstem­peratur f) = DoC. Am Beispiel von Cv erhalten wir

(2.26)

Auf der rechten Seite dieser Gleichung stehen in den eckigen Klammern die Mittelwerte Cv 1~2 und Cv 1~1, die in der Literatur [Au94] fUr die gebrauchlichen Fluide tabelliert vorliegen. Nach Gl.(2.26) geniigt der Mittelwert der Beziehung

(2.27)

Die Anderung der inneren Energie einer isochoren Zustandsanderung zwischen einem Anfangs- und Endzustand betragt somit nach den Gln.(2.24) und (2.27)

(2.28)

Mit den Gln.(2.24) lassen sich Differenzen der inneren Energie und der Enthal­pie berechnen. Zur Bestimmung absoluter Werte bedarf es der Festlegung von Referenzwerten Ure! und h re!. Vereinbaren wir z.B. fUr die feste Phase eines Stoffes bei f)re! und Pre! die spezifische Enthalpie zu hre!(f)re!,Pre!) und be­trachten die isobare Warmezufuhr mit Phasenanderung von 1 -+ 6 im Bild 5, (Pre! = PI = const), SO erhOht sich die Enthalpie entsprechend der Beziehung

T (2.29)

J Cp,Gas (T) dT .

TSchmelz TVerd

Die isobare Enthalpieanderung in Abhangigkeit von der Temperatur zeigt Bild 7. Da wir die Phasenumwandlung bei konstantem Druck betrachten, sind

Page 28: Starthilfe Thermodynamik ||

28 2 Zustandsverhalten einfacher Systeme

Schmelz- und Verdampfungstempe­ratur (TSchmelz, T Verd ) konstant. Die jeweiligen Phasenumwandlungs­enthalpien f::l.hSchmelz und f::l.hVerd

sind bei Pre! = Pl = const nur von der Phasenumwandlungstemperatur abhangig. Auch die Warmekapazitaten hangen bei dem isoharen ProzeB nur von der Temperatur abo

h

T ref T SCtmeIz T Vetd T Bild 7 Enthalpieanderung bei isobarer Er-

wiirmung mit Phasenumwandlung

Wir betrachten nun den allgemeinen Fall einer Zustandsanderung, bei der sich neb en der Temperatur auch der Druck und das spezifische Volumen andern. Bei der Bestimmung der Anderung der inneren Energie oder der Enthalpie miissen wir von den vollstandigen Gln.{2.19) und (2.21) ausgehen. So gilt fiir die Anderung der inneren Energie

(2.30)

In Gl.{2.30) hahen wir die Integration nicht langs des ProzeBweges P, sondern langs des Weges a gemaB Bild 8, ausgefiihrt.

Diese Vorgehensweise ist zulassig, da die innere Energie eine ZustandsgroBe ist. Das Ergebnis der Gl.{2.30) ist nur vom Anfangs- und Endzustand abhangig, nicht aber vom Integrations­weg zwischen diesen Zustanden. Man wahlt daher zweckmaBig als

T

v

Bild 8 Wahl des Integrationsweges

Integrationsweg einen der beiden Wege a oder b, auf deren Teilstrecken die Temperatur oder das spezifische Volumen konstant sind. Die Differentialquoti­enten 8u{T, v)/8v und 8h{p, T)/8p bestimmt man experimentell. Hierbei stellt sich die Frage nach der Unabhangigkeit der einzelnen Ausdriicke. Unter Ver­wendung der im Abschnitt 3.6 dargestellten Fundamentalgleichungen und der Maxwell-Relationen gelten zwischen den partiellen Ableitungen folgende

Page 29: Starthilfe Thermodynamik ||

2.4 Ideale Gase

Zusammenhii.nge:

8u(v, T) 8v

8h(p, T)

8p

~ (Cv(V, T)) 8v T ~ (Cp(p, T)) 8p T

= T8p(v, T) _ p aT

= _T 8v(P, T) + v aT

~(8p(V,T)) 8T 8T

= _~ (8v(p, T)) 8T 8T

=p(T'Y-1),

= v(l-T,B),

8 = 8T (P'Y) ,

8 = - 8T(v,B),

29

(2.31 )

Die letzte Gleichung gilt nicht fUr X = 0 und bei Annii.herung an den absoluten Nullpunkt. Diese Relationen erlauben nun folgende wichtige Aussage:

Das Zustandsverhalten eines Fluides (Stoffes) liijJt sich vollstiindig beschreiben, wenn die thermische Zustandsgleichung p = p( v, T) bzw. v = v(p, T) einschliejJ­lich ihrer partiellen Ableitungen bis zur 2. Ordnung bekannt ist (experimentell bestimmt wurde) und die spezijische Wiirmekapazitiit cv(T, vd oder Cp(PI, T) auf einer Isochoren (VI =const) bzw. auf einer Isobaren (PI =const) in Abhiingigkeit der Temperatur gemessen wurde.

Wie wir unmittelbar erkennen, ergibt sich 8u(v, T)/8v aus p = p(v, T) und 8p( v, T)/8T nach GI.(2.31). Mit GI.(2.30) erhalten wir die Differenz der inneren Energie. In gleicher Weise lii.Bt sich mittels der thermischen Zustandsgleichung V = v(p, T) und 8v(p, T)/aT nach GI.(2.31) 8h(p, T)/8p angeben. Die Differenz der Enthalpie betrii.gt nach GI.(2.21) dann

(2.32)

Die energetischen Zustandsgln.(2.19) und (2.21) lassen sich allgemein mit den Gln.(2.31) auch in der Gestalt schreiben:

du = Cv(T, v) dT + p[T 'Y(T, v) - 1] dv,

dh = Cp(p, T) dT + v(p, T) [1 - T ,B(p, T)] dp. (2.33)

2.4 Ideale Gase

Das Zustandsverhalten von Gasen lii.Bt sich im Vergleich zu Fliissigkeiten und Festk6rpern einfacher beschreiben. AIle realen Gase nii.hern sich bei kleinen

Page 30: Starthilfe Thermodynamik ||

30 2 Zustandsverhalten einfacher Systeme

Drucken p -+ 0 einem Zustand, in dem sie als ideale Gase3 betrachtet werden konnen. Die thermische Zustandsgleichung der idealen Gase basiert auf der Verknupfung der Gesetze von Gay-Lussac und Boyle-Mariotte [EI93]. 1st J-L die Teilchenmasse (Molekiilmasse) und M = n J-L die Masse aller betrachteten n Teilchen, so lautet die thermische Zustandsgleichung des idealen Gases

p V = n J-L RT = M RT bzw. p v = R T oder p = p RT . (2.34)

Hierbei ist R die spezielle Gaskonstante, die von der Art des betrachteten Gases abhangt. Beispielsweise betragt fUr Luft die Gaskonstante R = 287.1 J/(kg K). Sie wird durch Messung bestimmt. Die Existenz einer universellen Konstanten folgt aus dem

Satz 2.1 Gesetz von Avogadro: Alle idealen Gase enthalten bei gleichem Druck und gleicher Temperatur in gleichen Volumina die gleiche Anzahl n von Molekiilen bzw. Atomen.

Entsprechend Gl.(2.34) ist J-LR damit unabhiingig von der Art des Gases. Da die Teilchenzahl n eine relativ groBe Zahl ist, ist J-LR eine entsprechend kleine Zahl. Man hat daher das Verhaltnis

N = ~ in kmol NL

(2.35)

als Molmenge eingefUhrt. In Gl.(2.35) ist NL = 6.02217· 1026 /(kmol) die Loschmidt-Konstante, auch Avogadro-Konstante genannt. Sie kennzeichnet die Anzahl der Atome (Molekiile bzw. Elementarteilchen), die in 12 kg des Kohlen­stoffisotops 12C enthalten sind. NL ist also eine Bezugsteilchenzahl pro 1 kmol. Mit der Molzahl N kann man fur die Gasmasse M = n J-L = N NL J-L schreiben. Das Verhiiltnis M/N = NLJ-L = Mist die Molmasse in kg/kmol. Da einerseits J-LR = kB eine Konstante4 ist und andererseits J-L = M/NL gilt, muB nach J-LR = MR/NL auch MR = Reine universelle Konstante sein. Damit erhalten wir fur die thermische Zustandsgleichung

pV=MRT=NMRT=NRT=nkBT bzw. pv=RT. (2.36)

Entsprechend der Definition einer molaren GroBe ist v = V/N in m3/(kmol) das molare Volumen, bzw. das Molvolumen, das ebenfalls unabhangig von

3Nach der kinetischen Gastheorie sind in der Modellvorstellung des idealen Gases das Eigenvolumen der Molekiile und die zwischenmolekularen Krii.fte vernachliissigbar.

4kB ist die Boltzmann-Konstante, die unter anderem in der statistischen Thermodynamik von Bedeutung ist.

Page 31: Starthilfe Thermodynamik ||

2.4 Ideale Gase 31

der Gasart ist. Nach neuesten Messungen hat das Molvolumen des idealen Ga­ses im Normzustand den Wert fj = 22.414 m 3 /kmol. Uber den Normzustand (Def.1.5) liiBt sich nach Gl.(2.36) die universelle oder molare Gaskonstante zu R = 8314.41J/(kmolK) bestimmen.

Beispiel 2: Bestimmen Sie die Dichte von Kohlendioxid (C02 ) im Normzustand! Die Gas­konstante ist R = 189 J I (kg K). Lasung: Man hat die thermische Zustandsgleichung im Normzustand anzuwenden und nach der Dichte umzustellen:

Pn 1.01325 . 105 3

Pn = RTn = 189.273.15 = 1.963 kg/m. •

Beispiel 3: Luft (II;[ = 28.97 kg/kmol) mit einer Masse von M = 1.2 kg nimmt bei einem Druck von p = 3 MPa einen Raum von V = 0.08 m3 ein. Wie groB sind die Temperatur T, das spezifische Volumen v, die spezielle Gaskonstante R und das Molvolumen fj ?

Lasung: Die spezielle Gaskonstante ist R = ! = f:~~ = 287 J / (kgK). Die Tempe­ratur der Luft ergibt sich aus Gl.(2.34) zu

T = P V = 3 . 106 . 0.08 = 97 K . M R 1.2.287 6

Das spezifische Volumen ist v = t = °io28 = 0.06667 m3/kg. Das Molvolumen erhal­ten wir aus Gl. (2.36) zu

v = RT = 8314·696.86 = 1.931 m3/kmol. • p 3.106

Ausgehend von def thermischen Zustandsgleichung des idealen Gases p = RT Iv liiBt sich die allgemeine energetische Zustandsgleichung (2.19) mit den Be­ziehungen (2.31)

8p(T, v) R 8T v

82p(T, v) = O. 8T2 '

8u(T, v) _ T 8p(T, v) _ _ TR _ _ 0 8v - 8T p- v p-,

8cv(v, T) = T82p(v, T) = 0 8v 8T2

(2.37)

wie folgt vereinfachen

du(T) = ev(T) dT bzw. du(T) = cv(T) dT. (2.38)

Page 32: Starthilfe Thermodynamik ||

32 2 Zustandsverhalten einfacher Systeme

Die innere Energie idealer Gase ist damit nur von der Temperatur abhangig und nicht vom Druck oder dem spezifischen Volumen. Diese Aussage wurde bereits von Gay-Lussac (1806) und Joule (1848) im Ergebnis ihrer klassischen Uberstromversuche formuliert. Bei einatomigen Gasen (z.B. He, Ar) sind die Warmekapazitaten nahezu konstant, und auch bei zweiatomigen Gasen andern sie sich in Abhangigkeit von der Temperatur nur wenig. Naherungsweise kann mit folgenden molaren Werten gerechnet werden:

einatomige Gase (Ar, He) :

zweiatomige Gase(N2' O2, H2, ... ) :

Cv = M Cv = 12.6 kJ/(kmol K),

Cv = M Cv = 20.9 kJ/(kmol K). (2.39)

Bei mehratomigen Gasen (C02, H20, NH3,"') treten z.T. deutliche Ande­rungen der Warmekapazitaten mit der Temperatur auf, die man haufig mit Ansatzen in der Form

Cv = a + bT + cT2 (2.40)

beschreibt. ZweckmaBig rechnet man mit Mittelwerten Cvl~: gemaB der Gln.(2.25) und (2.27) bzw. in engen Bereichen der Temperatur mit konstan­ten Werten. Fur die innere Energie erhalt man

(2.41)

Fur ideale Gase ist auch die Enthalpie eine reine Temperaturfunktion5:

dh(T) = du + d(pv) = (Cv(T) + R)dT = Cp(T) dT. (2.42)

Zwischen den spezifischen Warmekapazitaten idealer Gase Cp und Cv besteht der von Robert Mayer angegebene Zusammenhang

cp(T) - Cv(T) = R, - R it

x(T) = Cp = 7 = 1 + - = 1 + -=- . Cv Cv Cv Cv

(2.43)

Fur das Verhaltnis der spezifischen Warmekapazitaten x gilt naherungsweise:

einatomige Gase r_ 8314

x = 2 ~ 1 + -- = 1.66 Cv 12600 ' Cp 8314

x = - ~ 1 + -- = 1.40. Cv 20900

(2.44) zweiatomige Gase

5Das folgt auch aus Gl.(2.31), da mit f3 = liT (siehe Beispiel 4) der Differentialquotient 8h(p, T)18p = v(l - T(3) = 0 ist.

Page 33: Starthilfe Thermodynamik ||

2.4 Ideale Gase 33

Eine Reihe technisch wichtiger Gase, insbesondere die bei tiefen Temperatu­ren verflussigbaren Gase (He, H2 , N2 , O2 ••• ), lassen sich durch die Zustands­gleichungen des idealen Gases ausreichend genau in einem weiten Druck- und Temperaturbereich beschreiben. Ideale Gase, fUr die konstante Werte der spe­zifischen Warmekapazitaten vorausgesetzt werden, sollen im weiteren als per­fekte Gase bezeichnet werden.

Beispiel 4: Bestimmen Sie fUr ein ideales Gas den thermischen Ausdehnungskoeffizien­ten (3, den isothermen Kc,mpressibilitatskoeffizienten X, und bestatigen Sie die Gl.(2.43)! Liisung: Nach den Gln.{2.15), (2.16) und (2.31) ist:

Beispiel 5:

(3 _ 1 ov _ 1 o( R;n _ R _ 1 --:;;8T--:;;~-pv-T'

1 ov 1 o( ~) RT 1 X = --:;; op = --:;;--ap = vp2 = p'

(32 Cp-cv=Tv-=R .•

X

(2.45)

Fur Kohlendioxid (C02) mit der Molmasse if = 44 kg/kmol gilt fUr kleine Drucke und Temperaturen 223 K ::; T ::; 773 K die Gleichung fur die spezifische Warmekapazitat cp = a+ bT+cT2 in kJ/(kg K) mit a = 5.274 .1O-lkJ/(kg K), b = 1.262 .1O-3kJ/(kg K2), c = -5.774 ·lO-7kJ/(kg K3 ), wobei T in K einzuset-

. B· S· d· . tl W·· ka ... 1500G 11500G 11500G zen 1st. estlmmen Ie Ie mIt eren arme pazltaten Cp OOG ,Cp OOG ,Cp 500 G

. - 11500G d 11500Gr sowle cp 500 G un Cv 500 G .

Liisung: Die Enthalpieanderung betragt zunachst ganz allgemein bei konstantem Druck:

1m einzelnen bestimmen wir

und

c 1500G

= p OOG

11500G

Cp OOG

5~[h{323K) - h{273K)] = 0.852kJ/{kgK),

0.896kJ/(kgK)

11500G 1 1 ( 11500G 1500G )

cp 500 G = 100 [h(423) - h(373)] = 100 Cp OOG 150 - Cp OoG 50 = 0.917kJ/{kgK).

Page 34: Starthilfe Thermodynamik ||

34 2 Zustandsverhalten einfacher Systeme

11500C _ 1 1500 C

Die molare Warmekapazitat ist Cp = M Cp = 40.36 kJ / (kmol K) . SchlieB-50°C 50°C

lich gilt nach Gl.(2.43)

11500C 1 1500 C R

Cv = Cp - -=- = 0.728kJ/(kgK) .• 50°C 50°C M

2.5 Reale Gase

Die Beschreibung des Zustandsverhaltens realer Gase ist stark vom jeweiligen Gas abhangig. Quantitative Aussagen gewinnt man nur uber das Experiment. Fur viele technisch wichtige Gase liegen entsprechende Ergebnisse in Form von Tabellen, Diagrammen, Zustandsgleichungen und Berechnungssoftware vor. Die Abweichungen vom Zustandsverhalten der idealen Gase, die insbesonde­re aus der Wirkung der intermolekularen Kraftfelder resultieren, nehmen mit wachsendem Druck und bei konstantem Druck mit sinkender

Temperatur zu, Bild 9. Das reale Verhal­ten eines Gases berucksichtigt man in der Zustandsgl.(2.34) durch den Realgasfaktor

pv Z = RT' (2.46)

pv T

kr

der eine Funktion von p, T ist [Ri96]. T - Tref Bild 9 p, v, T-Verhalten realer Gase

Beispielsweise gilt fUr Luft im Bereich 300 K ::; T ::; 1500 K und bei Drucken bis zu 10 MPa 0.98 < Z < 1.05. Fur ideale Gase (p -+ 0 bzw. p = l/v -+ 0) nimmt Z den Wert 1 an. Fur Z sind deshalb Potenzentwicklungen

urn p = 0 bzw. l/v = 0 gebrauchlich (Virialform der Zustandsgleichung). In der Literatur findet man zahlreiche Vorschlage fUr Zustandsgleichungen, die von relativ einfachen Beziehungen bis zu komplizierten Gleichungen mit einer Vielzahl von Parametern reichen. Wir beschranken uns hier auf die van der Waals-Gleichung

(2.47)

Page 35: Starthilfe Thermodynamik ||

2.5 Reale Gase 35

eine der ersten Gleichungen zur Beschreibung des realen Verhaltens. Trotz ih­res einfachen Aufbaues beschreibt sie das thermische Zustandsverhalten realer Gase qualitativ befriedigend. In Gl.(2.47) beriicksichtigt b das Eigenvolumen der Molekiile, durch das der fUr die thermische Bewegung zur VerfUgung ste­hende Raum verringert wird. Der Term a/v2 beriicksichtigt die Wirkung der zwischenmolekularen Krafte, die von der Gasdichte abhangig sind. Fiir groBes v geht die Gl.(2.47) in die thermische Zustandsgleichung idealer Gase iiber. Von der van der Waals-Gleichung hat man weitere dreiparametrige Gleichungen, wie die Redlich-Kwong-Gleichung, abgeleitet, die ahnliche Eigenschaften besitzen. Prinzipiell beschreibt Gl.(2.47) auch das Zustandsverhalten in der fiiissigen Pha­se qualitativ richtig. Der Realgasfaktor betragt fiir ein van der Waals-Gas

pv v a Z (v, T) = R T = v - b - R Tv· (2.48)

Mit konstanten Werten fUr a und b kann man das Zustandsverhalten des Flui­des nicht im gesamten interessierenden Bereich Br beschreiben. Gute Ergeb­nisse erhalt man durch eine abschnittsweise Anpassung der Konstanten an die experimentellen Daten. Die Kostanten a und b kann man auch naherungsweise bestimmen. HierfUr nutzt man die Bedingungen

8p(v, T) I = 0 8v kr '

82p(v, T) I = 0 8v2 kr

(2.49)

fUr den Wendepunkt der kritischen Isothermen, Bild 5. Mit den auf diese Weise ermittelten Konstanten a = ~RTkrVkr = 3PkrV~r und b = Vkr/3 ergibt sich der Realgasfaktor im kritischen Punkt nach Gl.(2.48) zu Zkr = 3/8 = 0.375. Das ist nur eine grobe Naherung, denn die Realgasfaktoren Zkr der meisten Gase liegen zwischen 0.23· . ·0.33. Mit den partiellen Ableitungen und den Gln.(2.31)

8p(v,T) R. 8u(v,T) = T8p(v,T) _ p = RT _ p =.!!... aT - v - b ' 8v aT v - b v2 ' 82p(v, T) = o. 8ev(v, T) _ T82p(v, T) _

aT2 ' 8v - aT2 -0 (2.50)

erhalten wir, analog zum Vorgehen bei idealen Gasen, die energetische Zu­standsgleichung

a dU(v, T) = cv(T) dT + 2dv.

v (2.51)

1m U nterschied zu den idealen Gasen ist die inn ere Energie realer Gase von der Temperatur und dem spezifischen Volumen abhangig. Ebenso ist die Enthalpie eine Funktion der Temperatur und des Druckes.

Page 36: Starthilfe Thermodynamik ||

36 2 Zustandsverhalten einfacher Systeme

2.6 Inkompressible und schwach kompressible Fluide

Bei Festkorpern und Flussigkeiten hangt das spezifische Volumen, insbesondere bei niedrigen Drucken, nur schwach yom Druck und der Temperatur ab, so daB sich vereinfachte Beziehungen fur die Zustandsgleichungen dieser Stoffe ergeben. Fur Flussigkeiten unterscheidet man die folgenden Naherungen:

Ideale Fliissigkeiten Ein Fluid verhalt sich wie eine ideale Flussigkeit, wenn in BT naherungsweise ov/8'I' = 0 und ov/op = 0 sind. Damit werden (J und X Null, und es ist

1 v = - = const bzw. dv = o.

p (2.52)

Ein Zusammenhang zwischen p, v, und T existiert nicht. Die innere Energie

du{T) = Cv{T) dT (2.53)

hangt nur von der Temperatur abo Fur die Enthalpie folgt aus Gl.{2.33)

dh{T, p) = Cp dT + v dp . (2.54)

Da entsprechend der Definitionsgl.{2.6) der Enthalpie diese auch mit Hilfe der inneren Energie berechnet werden kann,

dh{T,p) = du + d{pv) = Cv dT + vdp, (2.55)

folgt aus dem Vergleich mit Gl.{2.54)

Cp = Cv = cfl{T) . (2.56)

Inkompressible Fliissigkeiten Berucksichtigt man die thermische Volumenausdehnung OV / 8'I' und ver­nachlassigt die Kompressibilitat av / ap = 0, so ist das spezifische Volumen nur eine Funktion der Temperatur

v = v{T) bzw. dv = v (JdT. (2.57)

Ebenso gilt fUr die innere Energie

u{T, v{T)) = u{T) bzw. du = Cv{T) dT. (2.58)

Page 37: Starthilfe Thermodynamik ||

2.6 Inkompressible und schwach kompressible Fluide 37

Dagegen ist die Enthalpie von Temperatur und Druck abhangig, Gl.(2.33),

dh(p, T) = Cp(P, T) dT + v(T) [1 - T f3(T)] dp. (2.59)

Zweckmafiiger ist in diesem Fall die Berechnung mit Hilfe der Definitionsgl.(2.6)

dh = du + d(pv) = cv(T) dT + vdp + pvf3(T) dT,

dh = (cv + pv 13) dT + vdp.

Schwach kompressible Fliissigkeiten

(2.60)

Die thermische Zustandsgleichung (2.8) lautet unter Verwendung des Ausdeh­nungskoeffizienten (3 und des isothermen Kompressibilitatskoeffizienten X in dif­ferentieller Form

8v 8v dv(p, T) = ardT + 8p dp = v(f3dT - Xdp). (2.61 )

Ihr Integral ist

(2.62)

wobei wir von der Wegunabhangigkeit des Integranden Gebrauch machen. Weiterhin gelten die energetischen Zustandsgln.(2.33) in ihrer allgemeinen Form. 1st in BT die Zustandsanderung so geartet, daB (3, X und die spezifi­schen Warmekapazitaten Cp, Cv als Konstanten betrachtet werden k6nnen, dann laBt sich die Zustandsflache v = v(p, T) durch ihre Tangentialebene

v(p, T) = Vo + Vo [(3 (Po , To) (T - To) - X(Po, To) (p - po)] (2.63)

ersetzen. Fur die energetischen Gleichungen gilt dann naherungsweise

u( v, T) = uo + cv( Vo, To)(T - To) + Po (To 'Y(To, vol - 1)( v - vo) ,

h(p, T) = ho + cp(Po, To)(T - To) + vo(l - To (3 (Po , To»)(p - Po) .

In diesem Fall spricht man von einem schwach kompressiblen Fluid.

Beispiel 6:

(2.64)

Die Flussigkeitssaule eines Thermometers erreicht bei {)o = 40°C das Skalenen­de. Bei weiterer Erwarmung vollzieht sich eine isochore Zustandsanderung in der Kapillare. Welche DruckerhOhung tritt bei einer TemperaturerhOhung von t:J.{) = 1 K fUr die folgenden Flussigkeiten [Au94] auf?

Quecksilber: 13 = 0.182· 10-3 K-l , Wasser: (3 = 0.385· 10-3 K-1 ,

X 3.859.10-11 Pa-1 ,

X = 46.3· 10-11 Pa-1 .

Page 38: Starthilfe Thermodynamik ||

38 2 Zustandsverhalten einfacher Systeme

Losung: Fur eine differentielle Drucldinderung ist

8p 8p f3 dp{v, T) = 8v dv + ardT = p-ydT = X dT.

Die Integration dieser Gleichung ergibt die gesuchte Druckerh6hung

i T2 f3 f3 P2 - PI = - dT = -{T2 - Td .

Tl X X

1m speziellen Fall erhalten wir fur die gegebenen Stoffe:

APHg = 47.2 . 105 Pa, und APH20 = 8.3 . 105 Pa. •

Beispiel 7: Welche Druckerhohung ist notwendig, urn in der fiiissigen Phase von Wasser (ideale Fliissigkeit) die gleiche Enthalpieanderung zu erzielen, die durch eine Temperaturerhohung urn 1 K bewirkt wird? Vereinfachend kann mit konstanten p = 103 kg/m3 und Cp = Cv = Cfl = 4190J/(kgK) gerechnet werden.

Losung: Das Differential der Enthalpie, Gl.{2.55), dh(p, T) = du + d(PV) = Cv dT + ~ dp besteht aus einem Term, der die Temperaturanderung beschreibt, und einem Term, der die Druckanderung berucksichtigt. Aus Ah = Cv AT + ~AP = AhT + Ahp folgt fiir Ahp = AhT der Quotient Api AT = PCv = 41.9 .105 Pa/K. •

2.7 Mischungen idealer Gase

Besteht das System aus mehreren Komponenten, so erhoht sich die Zahl der Freiheitsgrade. Zur Kennzeichnung des Zustandes werden Konzentrationsva­riable benotigt. Man benutzt im allgemeinen

den Massenanteil den Molanteil

den Volumenanteil

_ Ni Yi=-

N und

(2.65)

Auf Grund der Erhaltung der Masse muB M = L Mi bzw. N = L Ni und damit L Yi = 1 bzw. L Yi = 1 gelten. Finden keine chemischen Reaktionen zwischen den Gaskomponenten statt und bilden diese ein homogenes Gemisch, so bleibt die Zusammensetzung der Mi­schung konstant. Das System verMlt sich dann wie ein einfaches thermodyna­misches System. Wir betrachten bei der Temperatur T und dem Druck p ein Gasgemisch der Masse M, das aus l Komponenten idealer Gase der Massen M i , i E [1, l] besteht.

Page 39: Starthilfe Thermodynamik ||

2.7 Mischungen idealer Gase 39

Das Gemisch nimmt dabei das Volumen Vein. Nach dem Gesetz von Avogadro ist das von einem Mol eines idealen Gases bei gegebenem Druck und gegebener Temperatur P, T eingenommene Volumen unabhangig von der Gasart. Es gilt damit

v: - - , v Vi = V = N: = N' , was ViE [1, l] (2.66)

zur Folge hat. Wir stell en uns nun vor, daB die i-te Gaskomponente bei P und T das Volumen V; C V einnimmt. Dann ergibt sich mit V = L: V; aus der thermischen Zustandsgleichung der i-ten Gaskomponente

(2.67)

nach Summation tiber aIle i die thermische Zustandsgleichung des Gemisches

l l l-

LPV; = pV = TLMi~ = TLMi 15 = N RT -+ pi; = RT. (2.68) i=l i=l i=l Mi

Eine weitere Aussage zum Verhalten der Einzelkomponenten unter Mischungs­bedingungen folgt aus dem

Satz 2.2 Gesetz von Dalton: In einer idealen Gasmischung nehmen alle Einzelgase unabhiingig von den ubrigen Gemischpartnem den gesamten zur Verfugung stehenden Raum Vein. Sie stehen dabei unter ihrem Partialdruck Pi bei der gegebenen Temperatur T.

Der Partialdruck Pi der i-ten Gaskomponente stellt sich ein, wenn nur die i-te Gaskomponente vorhanden ist und diese bei der Temperatur T das gesamte Volumen V des Gemisches einnimmt, also

R -Pi V = Mi R;T = Mi-;:;-T = Ni RT, ViE [1, l]

Mi (2.69)

ist. Wir summieren die Gl.(2.69) tiber aIle Gemischkomponenten:

l l l R _ l _

VLPi = TLMiR; = TLMi-;:;- = TRLNi = N RT. i=l i=l i=l M. i=l

(2.70)

Durch den Vergleich der Gln.(2.68) und (2.70) erhalten wir

(2.71)

Page 40: Starthilfe Thermodynamik ||

40 3 Thermodynamische Hauptsatze

Der Druck P der Gasmischung ist gleich der Summe der Partialdriicke Pi. Fiir diese folgt aus den Gln.(2.67), (2.69) und (2.65)

(2.72)

Das Gemisch selbst verhalt sich wie ein ideales Einzelgas mit der mittleren Molmasse M und der mittleren speziellen Gaskonstanten R, wobei fol­gende Beziehungen gelten:

I I

V = LYiVi spez. Volumen, R= LYiRi Gaskonstante , i=1 i=1 (2.73)

I I

P= LriPi Dichte, M = Ly;Mi Molmasse. ;=1 ;=1

Die energetischen GraBen des idealen Gemisches lassen sich aus den Einzelkom­ponenten berechnen. Fiir die innere Energie gilt

I I

U = Mu = LUi = LMiUi bzw. ;=1 i=1 (2.74)

I

du = Cv dT mit Cv = L Yi Cu,i , i=1

dfi = Cv dT mit Cv = L ij;i:v,i. (2.75) i=1

Fiir die Enthalpie erhalt man analoge Beziehungen. Luft als wichtiges ideales Gas ist durch die folgenden, naherungsweise konstan-ten Gemischwerte beschreibbar: -

ilL = 28.96kg/(kmol), RL = !! = 287.1 J/(kg K), XL = CpL = 1.4, ML CvL

CpL = XL 1RL = 1004.5 J/(kg K) , CvL = _l-lRL = 717.5 J/(kg K) . XL - XL-

3 Thermodynamische Hauptsatze

3.1 Das Energieerhaltungsprinzip

Der erste und der zweite Hauptsatz der Thermodynamik sind Erfahrungssatze, die durch Postulate eingefiihrt werden. Die Formulierung des ersten Hauptsatzes

Page 41: Starthilfe Thermodynamik ||

3.1 Das Energieerhaltungsprinzip 41

erfordert: 1. Die Existenz der extensiven ZustandsgroBe Energie E. 2. Die Giiltigkeit eines allgemeinen Energieerhaltungsprinzips, das in

Erweiterung des Erhaltungssatzes der mechanischen Energien die thermischen Energieformen einbezieht.

Wir betrachten ein abgeschlossenes Gesamtsystem, das aus n geschlossenen Teil­systemen besteht. Jedes Teilsystem besitzt die Energie Ei .

Satz 3.1 Das Energieerhaltungsprinzip fordert fur das abgeschlossene Gesamtsystem

n

L Ei = const bzw. (3.1)

Die Teilsysteme konnen in Wechselwirkung miteinander treten und Energie an der Systemgrenze iibertragen. In den meisten Anwendungsfii1len richtet sich die thermodynamische Betrachtung auf ein ausgewahltes System j. Dessen Energieanderung betragt dann dEj = - L: dEi . Urn bei der Untersuchung des

i-Ij Systems j von den iibrigen Teilsystemen (der Umgebung des Systems j) un-abhangig zu sein, fiihrt man an der Grenze des Systems j die Arbeit W und die War me Q ein.

Definition 3.1: Arbeit und Warme sind meflbare Energien, die zwischen ei­nem System und seiner Umgebung ubertmgen werden. Sie sind wegabhangige Prozeflgroflen, die nur an der Systemgrenze definiert sind. Mechanische Arbeit tritt durch die Wirkung einer Kraft an der Systemgrenze auf. Warme ist Energie, die die warmedurchlassige (diatherme) Systemgrenze infolge einer TemperaturdijJerenz uberschreitet.

Nach dieser Definition ist

n

dEj = I5Q + I5Wges = - L dEi .

i-Ij (3.2)

Wahrend dEj ein vollstandiges Differential ist, sind I5Q und I5Wges unvollstandi­ge Differentiale. Damit wird zum Ausdruck gebracht, daB Ej eine ZustandsgroBe ist, die nur vom End- und Anfangszustand abhangt, nicht aber von der Pro­zeBfiihrung. Hingegen sind Q und Wges ProzeBgroBen. Sie hangen vom Weg der Zustandsanderung abo Zur optischen Unterscheidung der unvollstandigen Differentiale von den vollstandigen Differentialen wird 15 statt d benutzt. Bevor wir den ersten und zweiten Hauptsatz einfiihren, eriautern wir die

Page 42: Starthilfe Thermodynamik ||

42 3 Thermodynamische Hauptsatze

Begriffe Arbeit und Warme naher. Als Beispiel wahlen wir die Kolben­Zylinderanordnung mit einem darin eingeschlossenen Gas, Bild 10. Die darge­stell ten Leistungseintrage bestehen aus der zunachst quasistatisch verrichteten Volumenanderungsarbeit pro Zeit vir v, der an der Welle Umgebung, Tu . ~~~~~~~~~~--~ iibertragenen Leistung W Welle,

• der elektrischen Leistung Wel

• und dem Warmest rom Q. Der Riihrer und der elektrische Wi­derstand gehoren nicht zum System.

Gas I - ------.......:

p,T w: v I

I-....,...,~--+­F

Bild 10 Das System 'Zylinder-Kolben' mit verschiedenen Leistungseintragen

3.2 Die Arbeit

In der vorliegenden Darstellung wollen wir uns auf die mechanische Arbeit W meeh und die Wirkung des Gravitationsfeldes als einziges auBeres Kraftfeld beschranken. Prinzipiell kann man aber auch elektrische, magnetische Felder und die Wirkung von Oberflachenkraften in die thermodynamischen Unter­suchungen einbeziehen. Hinsichtlich des thermodynamischen Systems hat die mechanische Arbeit sehr unterschiedliche Wirkungen. Sie kann den auBeren Sy­stemzustand oder den inneren Systemzustand andern.

3.2.1 Mechanische Arbeit und auBere Energien

Die Kraft F, die im Bild 10 den Kolben im ruhenden Zylinder antreibt, wir­ke jetzt auf den Schwerpunkt des Systems Zylinder-Kolben. Dadurch gerat die Zylinder-Kolben-Anordnung gegeniiber dem erdfesten x, z-Koordinatensystem in Bewegung. Der Vorgang gleicht einem auf einer Bahn bewegten Einzylinder­motor in einem auf Tour befindlichen Motorrad. Die Innenvorgange im Zylinder sind jetzt nicht von Interesse. Unser Au­genmerk gilt nur dem Schwerpunkt der Motormasse MM und der Bahn, die die­ser zuriicklegt. Langs der Schwerpunkt­bahn Hiuft die sk-Koordinate, Bild 11. Wir wollen den Bewegungsvorgang stark idea­lisieren und die Reibungskrafte und den Luftwiderstand, die an sich entscheidend

z Bahn

x Bild 11 Die Schwerpunktbahn des

Einzy lindermotors

Page 43: Starthilfe Thermodynamik ||

3.2 Die Arbeit 43

fUr die GroBe des erforderlichen Vortriebes sind, vernachHissigen. Die am Schwerpunkt angreifende Antriebskraft F dient dann dazu, die Geschwindig­keit c und die Hohenkoordinate z des Systemschwerpunktes zu andern. Langs der Bahn verrichtet die Antriebskraft F die mechanische Arbeit

(3.3)

Die Arbeit W mech,12 bewirkt eine Anderung der auBeren mechanischen Energien des Systems. Wir kennzeichnen sie daher auch als auBere Arbeit

(3.4)

da sie den Zustand im Zylinder nicht andert. Die Arbeit W ae12 ist gleich den Anderungen der kinetischen und der potentiellen Energie der Masse MM. Die kinetische Energie setzt sich aus dem translatorischen und dem rotatorischen Anteil zusammen. In Gl.(3.4) ist eK das auf die Kurbelwelle reduzierte Massen­tragheitsmoment der drehenden Motorteile, und wist die Winkelgeschwindigkeit der Kurbelwelle.

3.2.2 Arbeit und innere Energie

Das System Zylinder-Kolben, Bild 10, ruhe jetzt gegenuber dem erdfesten Koor­dinatensystem. Die auBeren ZustandsgroBen des Systems, wie die Geschwindig­keit c und die Hohenkoordinate z des Systemschwerpunktes, bleiben ungeandert. Der Kolben im Zylinder (Bild 12) sei frei beweglich. Die Kraft FSG = PsGAK an der beweglichen Systemgrenze (SG), die bei der Verschiebung des Kolbens die mechanische Arbeit Wmech,12leistet, bewirkt eine Anderung des inneren System­zustandes (PI, VI, Tl --t P2, V2, T2). Die Arbeit wird deshalb als Systemarbeit W l2 und speziell im vorliegenden Fall als Volumenanderungsarbeit WVl2

bezeichnet. Bei Vernachlassigung der Reibung zwischen Kolben und Zylinder­wand betragt die an der Kolbenstange angreifende resultierende Kraft unter Berucksichtigung des Umgebungsdruckes F = FSG - PuAKo Unter der Voraus­setzung einer quasistatischen Zustandsanderung, fur die PSG = P gilt, ergibt sich die Berechnungsgleichung der Volumenanderungsarbeit in Abhangigkeit der Sy­stemgroBen P und V:

W 12 = WV12quasistat = W mech,12 = [2 PSG AK dSsG = _ [2 pdV . (3.5)

Page 44: Starthilfe Thermodynamik ||

44 3 Thermodynamische Hauptsatze

1st der Druck an der Systemgrenze konstant, dann gilt GI.(3.5) auch bei beliebiger Kontur des Systems (z.B. BaIlon). Das negative Vorzeichen in GI.(3.5) entspricht der Festlegung: Die dem Gas von aufien zuge!uhrte Ar­beit (Kompression (dV < 0)) sei posi­tiv. Umgekehrt ist bei einem Entspan­nungsprozeB WV12quasistat < O. Das Gas gibt in diesem Fall die Arbeit tiber den Kolben nach au Ben abo Die Volu­menanderungsarbeit WV12quasistat ent­spricht der Flache unter der Kurve im p, V-Diagramm des Bildes 12. Wie man sieht, ist die Flache vom

p

Bild 12 Zylinder-Kolben mit p, V-Diagramm

Integrationsweg bzw. von der ProzeBfiihrung abhangig. Lauft der ProzeB von 1 --t 2 langs der gestrichelt eingezeichneten Linie ab, ist WV12quasist groBer als im vorliegenden Fall. Der Ausdruck

8WVquasistat = -p(V) dV

ist kein vollstandiges Differential. Mit

8WVquasistat und 8V =-p

8WVquasistat = 0 8p

folgt sofort, daB die Integrabilitatsbedingung [WM94]

~(8WVqUasistat) = -1 # ~(8WVqUasistat) = 0 8p 8V 8V 8p

nicht erftillt ist.

(3.6)

Die Volumenanderungsarbeit WV12nichtstat eines nichtstatischen Prozesses unter­scheidet sich von der eines quasistatischen Prozesses GI.(3.5) dadurch, daB der Druck zu einem beliebigen Zeitpunkt t im Bilanzgebiet ortsabhangig ist und im Fluid wahrend der Zustandsanderung (Verdichtung oder Entspannung) Reib­spannungen auftreten, die zu einer Gestaltanderungsarbeit der Fluidelemente fiihren. 1m System ist dann nur der Druck an der beweglichen Systemgrenze (im Bild 10 ist es der Kolben) PSG = FSG/AK bekannt. Er ist maBgebend ftir die an der Systemgrenze verrichtete Arbeit. Bei nichtstatischer Zustandsanderung

Page 45: Starthilfe Thermodynamik ||

3.2 Die Arbeit

ergibt sich das Differential der Volumenanderungsarbeit zu

t5WVnichtstat = -PSG dV = -p(V) dV - (PSG - p(V)) dV

= t5WVquasistat + t5WVdiss .

45

(3.7)

Die Volumenanderungsarbeit des nichtstatischen Prozesses spalten wir in zwei Anteile auf. Der erste Anteil berucksichtigt die Volumenanderungsarbeit t5WVquasistat = -pdV, die bei einem quasistatischen VergleichsprozeB (gleiche Volumenanderung) zu leisten ist. Dabei ist p(V) der Druckverlauf des quasista­tischen Vergleichsprozesses. Der zweite Anteil

t5WVdiss = t5WVnichtstat - t5WVquasistat = - (PSG - p) dV 2:: 0 (3.8)

ist der irreversible Anteil der Volumenanderungsarbeit, der sowohl bei der Kom­pression (dV < 0) als auch bei der Expansion (dV > 0) einen positiven Wert besitzt. Er ist mit der Gestaltanderungsarbeit der Fluidelemente verbunden. t5WVdtss bewirkt bei der Kompression einen erhohten Energieaufwand und bei der Expansion einen verminderten Energiegewinn. Wir sprechen von dissipierter Energie, worauf noch naher eingegangen wird. 1m Bild 12 ist der nichtstatische ProzeB punktiert eingezeichnet. Er fiihrt yom Anfangszustand 1 zum Endzu­stand 2nichtstat. Die Flache zwischen dem punktiert gezeichneten nichtstatischen Zustandsverlauf und dem durchgezogenen reversiblen Zustandsverlauf charak­terisiert die Dissipationsarbeit t5Wvdiss. Entsprechend dem Energieerhaltungsprinzip bewirkt die Volumenanderungsar­beit eine Anderung der Energie des Systems. Fur ein adiabates System, das mit der Umgebung nur in Form von Arbeit in Wechselwirkung treten kann, gilt

t5Wv = (dE)ad = (dU)ad. (3.9)

Da sich weder die kinetische noch die potentielle Energie geandert haben, muB es eine weitere Energieform, die innere Energie U geben, deren Anderung un­mittelbar mit der Anderung der thermischen ZustandgroBen p, v, T des Systems verbunden ist.

Definition 3.2: Die innere Energie ist die in der Translations-, Rotations­und Schwingungsenergie der ungeordneten Molekularbewegung gespeicherte Energie. Ihr Differential

dU = (t5W)ad = dU(v, T) bzw. ihre Differenz U2 - U1 = (W12 )ad (3.10)

ist experimentell durch die an einem adiabaten System verrichtete Systemarbeit bestimmbar.

Page 46: Starthilfe Thermodynamik ||

46 3 Thermodynamische Hauptsatze

Betrachten wir wieder das im Bild 10 dargestellte System. Ihm wird jetzt nicht Volumenanderungsarbeit, sondern Energie mit einem Riihrer zugefiihrt:

to+Ll.t to+Ll.t

WWelle12 = J WWelle (t) dt = J Md W dt = W Rl2 . (3.11) t=to t=to

Md ist das Drehmoment des Riihrers, und wist die Winkelgeschwindigkeit der Antriebswelle. Zwischen Riihrerblatt und Fluid sowie im Inneren des Systems wirken Scherkrafte. Die durch den Riihrer an das System abgegebene Energie ist daher Reibungsarbeit W Rl2 . Die Reibungsarbeit erh6ht die innere Energie des Systems. Sie ist ebenfalls eine Form der Systemarbeit. Fiir adiabate Systeme mit konstantem Volumen (ohne Volumenanderungsarbeit) gilt

(3.12)

Die gleiche Zustandsanderung, die der Riihrer verursacht, kann auch durch die elektrische Arbeit We112 einer Widerstandsheizung realisiert werden. Liegt an der Heizspirale, Bild 10, mit dem Widerstand Rei die Potentialdifferenz Uel an und flieBt der Strom lei' dann wird dem Fluid im System die elektrische Arbeit

to+Ll.t to+Ll.t

We112 = J Wei (t) dt = J J';I Rei dt ~ 0 (3.13)

t=to t=to

zugefiihrt. Analog zu GI.(3.12) gilt

(3.14)

In beiden Fallen sind die Prozesse irreversibel, da sich innere Energie nicht von selbst in elektrischen Strom wandelt und ebenso die vom Riihrer aufgenomme­ne Arbeit durch das Fluid nicht un mittel bar wieder an diesen zuriickgegeben werden kann. Man spricht in diesen Fallen von einer Dissipation (Zerstreuung) der Energie und bezeichnet die in dieser Weise verrichtete Arbeit als Dissipa­tionsarbeit

Wdiss12 = W R12 + W e112 ~ 0 , (3.15)

die dem System stets nur zugefiihrt werden kann. Driickt man bei einem nicht­statischen ProzeB die tatsachliche Volumenanderungsarbeit WVnichtstat durch die Volumenanderungsarbeit WVquasistat eines quasistatischen Vergleichprozes­ses aus, GI.(3.7), so hat man in GI.(3.15) zusatzlich WVdiss zu beriicksichtigen.

Page 47: Starthilfe Thermodynamik ||

3.3 Die Warme 47

Definition 3.3: Die Systemarbeit W 12 ist die Arbeit, die eine Anderung des inneren Systemzustandes bewirkt. Sie ergibt sich aus der Summe von Vo­lumeniinderungsarbeit und Dissipationsarbeit. Sie ist bei adiabaten Systemen gleich der Anderung der inneren Energie

t5W = t5Wv + t5WR + t5We/ = t5Wv + t5Wdiss = (dU)ad. (3.16)

Fur quasistatische Zustandsiinderungen gilt

W 12quasistat = -12 p(V) dV + Wdiss12 bzw. W12rev = -12 Prev{V) dV, (3.17)

wobei sich die Druckverlaufe p(V) im irreversiblen und reversiblen ProzefJ un­terscheiden (vergl. Abschnitt 3.5.4).

Die quasistatische Systemarbeit W12quas>stat ist nur dann gleich der reversiblen Systemarbeit W12rev, wenn die dissipativen Anteile W R12 , Wei verschwinden. Bei der Anwendung von Gl.(3.17) in den folgenden Kapiteln set zen wir quasistati­sche Zustandsanderungen voraus, ohne dieses jeweils zu betonen. Die Summe aus Systemarbeit W 12 und auBerer Arbeit W ae12 ergibt die Gesamt­arbeit Wges12 in Gl.(3.2).

3.3 Die Warme

Wird an der Systemgrenze keine Arbeit ubertragen, so kann zwischen Umge­bung und System trotzdem ein Energietransport stattfinden. Das ist dann der Fall, wenn die Systemgrenze warmedurchlassig (diatherm) ist und sich die Um­gebungstemperatur Tu von der Temperatur T des Systems unterscheidet. Man nennt die ubertragene Energie Warme. Die dem System zugefuhrte Warme ist definitionsgemaB positiv. Sie flieBt stets yom System hOherer Temperatur zum System niedrigerer Temperatur. Damit ist dieser Transport ein irreversibler ProzeB. Der Temperaturunterschied an einer diathermen Systemgrenze ist die Ursache fUr den nicht stoffstromgebundenen und yom ProzeBverlauf abhangi-

• gen Warmest rom Q, der analog zur Leistung die pro Zeiteinheit ubertragene Warme beschreibt. Fur den Warmestrom durch die Systemoberflache (Wand) gilt

• rSQ Q = ill = k A (Tu - T) in W. (3.18)

Dabei ist k der Warmedurchgangskoeffizient in W /(m2K), und A ist die diather­me Systemoberflache. Der Warmedurchgangskoeffizient hangt von mehreren

Page 48: Starthilfe Thermodynamik ||

48 3 Thermodynamische Hauptsatze

EinHuf3grof3en ab [EI93, St92]. Der Grenzfall k -+ 0 kennzeichnet die warmeun-•

durchlassige (adiabate) Wand. Das Zeit integral iiber den Warmestrom Q liefert die iibertragene Warme

to+~t to+~t

Q12 = A ! k (Tu - T) dt bzw. q12 = Q12 = ~ ! k (Tu - T) dt. M M

(3.19)

t=to t=to

Fiir gegen Null gehende Temperaturdifferenz (Tu -+ T), dem Grenzfall des •

reversiblen Warmeiiberganges, und Q = const miissen die Warmeiibertragungs-Hache A -+ 00 oder der Warmedurchgangskoeffizient k -+ 00 streben.

3.4 Der erste Hauptsatz Wir betrachten ein ruhendes geschlossenes System. An der Systemgrenze werden sowohl Arbeit als auch Warme iibertragen. Die Anwendung des Energieerhal­tungssatzes (3.1) fiihrt direkt zum erst en Hauptsatz.

3.4.1 Formulierung des ersten Hauptsatzes mit der inneren Energie

Satz 3.2 Erster Hauptsatz: Bei einer Zustandsiinderung in einem ruhen­den geschlossenen System ist die Summe der in Form von Systemarbeit W 12

und Wiirme Q12 an der Systemgrenze durch Wechselwirkung mit der Umge­bung ubertragenen Energien gleich der Anderung der inneren Energie U des Systems:

(3.20)

oder auf die Systemmasse bezogen in differentieller und integraler Darstellung

8q + 8w = 8q + 8wv + 8Wdiss = du,

q12 + W12 = q12 + WV12 + Wdiss12 = U2 - U1 (3.21)

sowie fur quasistatische und reversible Prozesse

q12 - [2 p(v) dv + Wdiss12 = U2 - U1 bzw. Q12rev _[2 Prevdv = U2 - U1. (3.22)

Page 49: Starthilfe Thermodynamik ||

3.4 Der erste Hauptsatz 49

1m Unterschied zur inneren Energie U2 bzw. U1 sind Arbeit und Warme keine ZustandsgroBen. Sie konnen nicht in der Form W2 bzw. WI und Q2 bzw. Ql an­gegeben werden. Vielmehr sind W 12 und Q12 vom ProzeBweg (1 -t 2) abhangige GroBen. Wir betrachten nun das bewegte geschlossene System. Dabei sind in Gl.(3.20) zusatzlich die auBere Arbeit Wae am Systemschwerpunkt und seine kinetische und potentielle Energie zu beriicksichtigen. Verallgemeinert gilt:

- .6.EUmg = Q12 + Wges12 = Q12 + W ae12 + W V12 + Wdiss12 = E2 - El (3.23)

bzw. in der differentiellen Darstellung

- dEUmg = 8Q + 8Wae + 8Wv + 8Wdiss12 = d(U + Ekin + Epot) . (3.24)

In den folgenden Abschnitten beschranken wir uns auf ein ruhendes geschlosse­nes System.

3.4.2 Formulierung des ersten Hauptsatzes mit der Enthalpie

Mit der nach Gl.(2.6) definierten Enthalpie H = U + pV, die im Abschnitt 5. naher erlautert wird, lautet der erste Hauptsatz

dH = dU + d(pV) = 8Q + 8Wv + d(pV) + 8Wdiss . (3.25)

Diese Gleichung vereinfacht sich mit der fUr quasistatische Zustandsanderun­gen1 giiltigen Volumenanderungsarbeit 8Wv = -pdV = -d(pV) + Vdp. Es gilt

dH = 8Q + V dp + 8Wdiss

bzw. in integraler Form unter Verwendung der spezifischen GroBen

h2 - hI = q12 + [2 v(p) dp + Wdissl2.

Das Integral

WDl2 = [2 v(p) dp

(3.26)

(3.27)

(3.28)

1 Unter der Voraussetzung des lokalen Gleichgewichtes (vergl. Abschnitt 1.3) ist der erste Hauptsatz fUr quasistatische Zustandsanderungen in der Formulierung mit U und Hauch auf differentiell kleine Fluidelemente dM = pdV anwendbar.

Page 50: Starthilfe Thermodynamik ||

50 3 Thermodynamische Hauptsatze

2

~F

ist die spezifische Druckande­rungsarbeit. Die Druckande­rungsarbeit entspricht der im Bild 13 eingezeichneten Flache. Zur Erklarung der Druckande­rungsarbeit dient die wahrend ei­ner Arbeitsperiode eines Kolben­verdichters, Bild 13, verrichtete Volumenanderungsarbeit bei re­versibler ProzeBfuhrung. Verein­fachend nehmen wir an, daB das verdichtete Gas von 2 --+ 3 bei konstantem Druck P2 ausgescho­ben wird, die Ventile plotzlich

~--------~~~~ p~ UT

Bild 13 Druckiinderungsarbeit bei einem Verdichtungsvorgang

vom Druck- auf den Saughub (3 --+ 4) schalten und das Gas von 4 --+ 1 bei konstantem Druck PI angesaugt wird. Fur eine Umdrehung der Antriebswelle ist dann die Arbeit

Wrev = WVI2 + WV23 + WV34 + WV4I = - f pdV (3.29)

erforderlich. Da die Zustandsanderung von 3 --+ 4 voraussetzungsgemaB iso­chor2 ablauft, ist WV34 = 0 und damit

Wrev = - /2 p(V) dV _ P2 {va=o dV _ PI (Vl dV I }V2 }V4=O

= _[2 pdV + P2Y2 - PI Vi = [2 V(p) dp = W DI2 .

(3.30)

Die Druckanderungsarbeit W D12 ist die Arbeit, die bei periodischer Wiederho­lung der Zustandsanderung 1 --+ 2 an der Welle aufzubringen ist. Sie beruck­sichtigt die Ein- und Ausschiebearbeit und ist ein Teil der technischen Arbeit Wt12 , die im Abschnitt 5.4 eingefiihrt wird. Der auf die Kolbenruckseite wir­kende Umgebungsdruck Pu hat bei einer Arbeitsperiode (§ PudV = 0) keinen EinfluB auf die an der Kolbenstange bzw. der Antriebswelle ubertragene Arbeit

Beispiel 8: In einem Zylinder solI Luft (ideales Gas) von Vi = 0.5m3 , PI = Pu = 105 Pa und TI = 293 K isotherm, d.h. bei gleichbleibender Temperatur auf

2Die Isochore ist eine Zustandsanderung bei konstantem Volumen.

Page 51: Starthilfe Thermodynamik ||

3.4 Der erste Hauptsatz 51

P2 = 4 . 105 Pa verdichtet werden. Berechnen Sie fUr einen reversiblen ProzeB das Volumen V2 nach der Verdichtung, die Volumenanderungsarbeit WV12rev,

die Druckanderungsarbeit WDl2rev und die Warme Q12rev!

Losung: Fur isotherme Zustandsanderung, T2 = Ti = const, folgt aus der thermi­schen Zustandsgl. (2.34)

P V = P2 V2 = Pi Vi = M R Ti = const . (3.31 )

Da Pi, Vi und P2 vorgegeben sind, erhalten wir fUr V2 = Pi Vi/P2 = 0.125 m3 . Aus Gl.(3.31) folgt mit P = Pi Vi/V die Volumenanderungsarbeit

Die Druckanderungsarbeit bei isothermer Zustandsanderung ist entsprechend Gl.(3.31) mit pV = const bzw. d(PV) = 0 und V dp = -pdV gleich der Volumenande­rungsarbeit W D12 = WV12IT=const. Die bei der isothermen Verdichtung von 1 -+ 2 abzufUhrende Warme ist nach dem ersten Hauptsatz bestimmbar. Die Anderung der inneren Energie des idealen Gases ergibt sich wegen T = const und du = Cv dT zu Null. Aus Gl.(3.20) folgt Q12rev = U2 - Ui - WV12rev = - WV12rev = 69.3 kJ. •

3.4.3 Die Warme bei reversiblen Prozessen

Bei bekannter Zustandsanderung sind die Volumen- und die Druckanderungsar­beiten mit den Gln.(3.17) und der Gl.(3.28) berechenbar. Die Anderungen der inneren Energie und der Enthalpie ergeben sich in Abhiingigkeit des Arbeits­mediums aus der jeweiligen energetischen Zustandsgl.(2.33). In diesen Fallen stellt der erste Hauptsatz (3.21) die Berechnungsgleichung fUr die Warme dar. Fur reversible Prozesse gilt unter Berucksichtigung der allgemeinen Form der energetischen Zustandsgln.(2.19) und (2.21)

ou (OU) (OU) oqrev = du(v, T) + pdv = ar dT + ov + P dv = evdT + OV + P dv,

oh (Oh) (Oh) oqrev = dh(p, T) - vdp = ar dT + op - v dp = cpdT + op - v dp. (3.32)

Fur isochore (dv = 0) und isobare (dp = 0) Zustandsanderungen hiingt die reversibel ubertragene Warme nur von der Temperaturanderung ab:

I ou bqrev vo=const = du(T) = aT dT = cv(T, vo) dT ,

ah bqrevlpo=const = dh(T) = aTdT = cp(T,po) dT.

(3.33)

Page 52: Starthilfe Thermodynamik ||

52 3 Thermodynamische Hauptsatze

Die Gl.(3.33) verdeutlicht die vorteilhafte Anwendung der energetischen Zu­standsgroBe Enthalpie bei isobaren Prozessen. Andererseits folgt aus den Gln.(3.33) auch anschaulich die Bedeutung der spezifischen Warmekapazitaten

(T ) = ou(T, vo) = 8qrev I Cv , Vo EJT dT vo

(T ) = oh(T, Po) = 8qrev I cp ,Po EJT dT PO

bzw. (3.34)

bzw.

und ebenso ein Weg fur ihre experimentelle Bestimmung. Die Warmekapa­zitaten Cv und Cp sind ein MaB dafiir, wieviel Warme pro Masseneinheit in Abhangigkeit von der Zustandsanderung (isochor oder isobar) erforderlich ist, urn bei einem Wertepaar T, Vo bzw. T, Po die Temperatur des betreffenden Stof­fes urn ein Kelvin zu erhohen. Es sei nochmals erwahnt, daB die Verknupfung der Warme mit der Tempera­turdifferenz entsprechend den Gln.(3.33) nur fiir reversible isochore und isoba­re Zustandsanderungen zulassig ist. Fur isotherme Zustandsanderungen gilt Q12rev = - Wl2rev.

Beispiel 9: Ein zylindrischer Gasbehalter (Gasometer) hat einen Durchmesser de = 16 m und eine Hohe Ze = 20 m, Bild 14. Er wird durch einen vertikal verschieb­baren Deckel der Masse MD = 50000 kg gasdicht abgeschlossen. Durch Son­neneinstrahlung vergroBert sich das Gasvolumen. Der Deckel hebt sich urn b.ze = 0.5 man. Das Gas hat vor der Sonneneinstrahlung eine Temperatur von Tl = 293 K. Die Gaskonstante, die spezifische Warmekapazitat und der Luftdruck betragen: R = 287 J/(kgK), cp = 1004J/(kgK) und Pu = 105 Pa. Berechnen Sie 1. die Gasmasse Me, die sich im Gaso­

meter befindet, 2. den Zustand T2 ,P2, V2 des Gases

nach der Sonneneinstrahlung, 3. die durch die Sonne zugefiihrte

Warme Q12, 4. die Volumenanderungsarbeit WVI2 ,

5. die A.nderung der inneren Energie b.U = U2 - U1!

~----_L. ~ __ I A~ I : I

Pu

Bild 14 Gasometer

Losung: Der Deckel des Gasometers hat die Flii.che Ae = d~7r/4 = 201.06m2 . Der Absolutdruck PI im Gasometer betragt

MDg PI = Pu + Ae = 0.10244 MPa .

Page 53: Starthilfe Thermodynamik ||

3.4 Der erste Hauptsatz 53

Die Behiiltervolumina vor und nach der Sonneneinstrahlung ergeben sich zu:

VI = Aa Za = 4021.2 rna und V2 = Aa(za + t1za) = 4121.8 rna .

Die Gasmasse im Gasometer Ma = VI PI = V1Pt/(RTd = 4898.7kg bleibt wahrend der Zustandsanderung konstant. Die Zustandsanderung durch Sonneneinstrahlung vollzieht sich wegen des beweglichen Deckels isobar P2 = PI = const. Somit folgt aus den thermischen Zustandsgleichungen

PI VI = MaRTI und P2 V2 = Ma RT2

die Temperatur des Gases nach der Sonneneinstrahlung T2 = V2/VITI = 300.3 K. Mit der Gl.(3.6) erhalten wir fUr die Volumenanderungsarbeit

WV12 = -12P dV = -Pl(V2 - VI) = -1O.298MJ.

Die durch die Sonne zugefUhrte Warme Q12 laBt sich unmittelbar aus der Enthalpie­formulierung des ersten Hauptsatzes (3.27) berechnen. Es ist

Q12 = H2 - HI = Ma Cp(T2 - Td = 36.051 MJ .

SchlieBlich bestimmen wir noch die Anderung der inneren Energie mit dem ersten Hauptsatz (3.20)

U2 - U1 = Q12 + WV12 = 36.051 - 10.298 = 25.753 MJ. •

3.4.4 Anwendung des erst en Hauptsatzes auf abgeschlossene Systeme

In einer Reihe von Anwendungsfallen, wie z.B. bei dem im Bild 15 dargestellten Kalorimeter, bilden mehrere Korper, deren auBere Energien konstant sind, ein ruhendes abgeschlossenes Gesamtsystem (GS). Das Gesamtsystem im Bild 15 besteht aus dem Vakuummantel­gefaB der Masse Ma, der Kalorimeterfliissig­keit M 2 , dem Riihrer M 4 , dem Thermometer M5 und einem Probekorper der Masse M1 ,

dessen spezifische Warmekapazitat Cvl be­stimmt werden solI. Die spezifischen Warme­kapazitaten der Fliissigkeit und der Korper mit den Massen Mi , i = 2,3,4,5 sind be­kannt. Die Warmekapazitat der Einbauten bestimmt man in der Praxis experimentell. Wir nehmen an, daB keine Warme an die Umgebung

Bild 15 Mischkalorimeter, abgeschlossenes Gesamtsystem

Page 54: Starthilfe Thermodynamik ||

54 3 Thermodynamische Hauptsatze

iibertragen wird. Zur Messung von Cvl nutzen wir die Mischungsmethode. In das Kalorimeter wird Wasser der Masse M2 gefiillt. Das VakuummantelgefaB, das Wasser, der Riihrer und das Thermometer haben die Anfangstemperaturen T2A = T3A = T4A = TsA. Der zu untersuchende Probekorper hat die Anfangs­temperatur TIA > T 2A. Innerhalb des abgeschlossenen Gesamtsystems finden zwischen den einzelnen Korpern Warmeiibergange statt. Praktisch stellt sich nach endlich langer Zeit ein Gleichgewichtszustand bei der Mischtemperatur TM ein. Da an der Grenze des Gesamtsystems weder Arbeit noch Warme iibertragen werden, folgt aus dem erst en Hauptsatz (3.20)

dUGS = 8WGS + 8QGS = O. (3.35)

Hierbei haben wir vorausgesetzt, daB das Volumen des Gesamtsystems wahrend des Ausgleichsvorganges konstant bleibt und der Energieeintrag des Riihrers WWelle ~ 0 ist. Die inn ere Energie des Gesamtsystems ergibt sich additiv aus den inneren Energien der Korper (Teilsysteme). Fiir die betrachteten Korper sei die spezifische innere Energie nur eine Funktion der Temperatur (ide ales Gas bzw. inkompressibles Medium mit p = const). Dann ergibt die energetische Zustandsgleichung

dUGS = I:: dUi = I:: Mi Cvi d1i = 0 (3.36)

bzw. nach der Integration zwischen dem Anfangs- und dem Gleichgewichtszu­stand

(3.37)

Die spezifische Warmekapazitat Cvl des Probekorpers folgt aus Gl.(3.37) zu

(3.38)

Mit Hilfe der Gl.(3.37) sind eine Reihe weiterer Problemstellungen, wie die Bestimmung der adiabaten Mischungstemperatur oder die Ermittlung eines be­stimmten Mischungsverhaltnisses zur Erzielung einer bestimmten Mischungs­temperatur, lOsbar.

Beispiel 10: Die beiden Behalter im Bild 16 seien gegeniiber der Umgebung und auch un­tereinander warmeisoliert. In ihnen befinde sich jeweils ein perfektes Gas der

Page 55: Starthilfe Thermodynamik ||

3.4 Der erste Hauptsatz

Masse MA bzw. MB mit unterschiedlichen Tempe­raturen TAl # TBl und unterschiedlichen Driicken PAl # PBl. Die Wand, die beide Behalter trennt, wird plotzlich entfernt, so daB ein Behiilter mit dem Volumen V2 = VA + VB entsteht. Welche Tem­peratur T2 und welcher Druck P2 stellen sich

nach dem Entfernen der Zwischenwand ein?

55

A B

Bild 16 Behalter A und B

Lasung: Das aus den Behaltern A und B bestehende System bildet ein abgeschlos­senes Gesamtsystem. Mit der Umgebung gibt es daher keine Wechselwirkung. Wird die Trennwand entfernt, so setzt ein Druck- und Temperaturausgleich ein. Der Aus­gleichsvorgang kann mit einer heftigen Stromung verbunden sein, die mit der Zeit infolge der praktisch auftretenden Reibung abklingt. Den sich einstellenden Gleich­gewichtszustand charakterisieren wir durch den Index 2 im Gegensatz zum Anfangs­zustand, der den Index 1 erhalt. Wegen QCS12 = WCS12 = 0 gilt GI.(3.35), also (U2 - Udcs = 0, die Konstanz der inneren Energie. Ftir perfekte Gase gilt

(U2 - Ul)CS = (MA + MB)U2 - MAUAI - MBuBl = MA(U2 - UAl) + MB(U2 - uAd

= MACv (T2 - TAd + MBCv (T2 - TBl).

Da UCS2 = UCSI ist, erhalten wir fUr die sich einstellende Temperatur

To _ MATAI + MBTBl 2 - MA+MB '

und tiber die thermische Zustandsgl. P2V2 = (MA + MB)RT2 folgt der Druck zu

(MATAI + MBTBl)R • P2 = VA + VB .

3.4.5 Das instationare Verhalten geschlossener Systeme

Der erste Hauptsatz beschreibt die energetischen Wechselwirkungen zwischen dem System und seiner Umgebung, ohne eine Aussage dariiber zu treffen, in welcher Zeit sich diese vollziehen. Interessiert man sich fUr die Abhangigkeit des Systemzustandes von der Zeit, so erfordert das die Kenntnis der Leistung und des Warmestromes

(3.39)

als Funktion von der Zeit. Wir betrachten ein geschlossenes System mit:

Page 56: Starthilfe Thermodynamik ||

56 3 Thermodynamische Hauptsatze

1. konstantem Systemvolumen V = M j p und Cv = const, 2. konstanter Dissipationsleistung

•• 8Wdiss 8W R 8Wel W=W diss= ~ = dt + dt = const, (3.40)

die durch einen Ruhrer bzw. eine elektrische Heizung verursacht wird, und 3. zeitabhangigem Warmest rom

• Q = -k A(T(t) - Tu) . (3.41)

Dabei ist k der konstant vorausgesetzte Warmedurchgangskoeffizient der Sy­stemgrenze, und Tu ist die konstante Umgebungstemperatur. Der erste Haupt­satz (3.20) ergibt fUr die A.nderung der inneren Energie des geschlossenen Sy­stems

• • dU = Mev dT = 8Q + 8Wdiss = (Q + Wdiss)dt (3.42)

und damit die gewohnliche Differentialgleichung (Dgl.)

dU • • dt = (Q + Wdiss) bzw. dT 1· • dt = Mev (Q + Wdiss) (3.43)

fUr die innere Energie bzw. fUr die Temperatur des Systems. Es solI der zeitabhangige Verlauf der Temperatur des Systems bestimmt werden. Dazu er­setzen wir in Gl.(3.43) den Warmestrom nach Gl.(3.41). Fur die Temperatur T ergibt sich die lineare gewohnliche Differentialgleichung

• dT kA (T _ T. _ WdiSS) = dt + M Cv u kA 0 . (3.44)

Gesucht wird die Losung dieser Gleichung, die der Anfangsbedingung T = To •

fur t = 0 genugt. Da Tu und W diss j(kA) Konstanten sind, konnen wir statt der Dgl.(3.44) auch die Differentialgleichung

• d~ kA c = 0 dt + Mev'"

mit c = T _ T. _ W diss ." u kA (3.45)

als der abhangigen Variablen einfuhren. Diese Gleichung ist homogen. Sie laBt sich nach Trennung der Veranderlichen [WM94] bestimmt integrieren. Die Losung ist

• mI·t c - 'T' T. W diss

.,,0 -.Lo- u-~ Mev

und tR = kA . (3.46)

Page 57: Starthilfe Thermodynamik ||

3.4 Der erste Hauptsatz 57

In dieser Gleichung ist tR die Relaxationszeit. Wir erhalten die zeitabhangige Temperaturverteil ung

• • T rro _ W diss + (rro rro W diSS) -f-

- .1 u - kA .10 - .1 u - kA e R.

Wie man sieht, geniigt Gl.(3.47) der Anfangsbedingung T(t = 0) = To. Strebt t -+ 00, so stellt sich der stationare Zustand

• (T -1:)1 = Wdiss

u t-+oo kA

(3.47)

(3.48)

ein. Die im System dissipierte Energie ist gleich der an die Umgebung (nach auBen) abgefiihrten Warme. Von Interesse ist noch der Fall k -+ 0, d.h., es gibt keinen Warmestrom iiber die Systemgrenze. Diesen Grenzfall enthiilt die Gl.(3.47) nicht. Die Dgl.(3.44) reduziert sich fiir k -+ 0 auf

• dT Wdiss

dt Mcv ·

Die der Anfangsbedingung geniigende Lasung ist

• T = To + WMdiSS t .

Cv

Da jetzt keine Warme mehr abgefiihrt wird, strebt T -+ 00 fiir t -+ 00.

Vernachlassigen wir vir disSl so geht Gl.(3.47) in

(3.49)

(3.50)

(3.51 )

iiber. Das dimensionslose Temperaturverhiiltnis 8 = (T - Tu)/(To - Tu) hiingt nur von der Relaxationszeit tR abo Die Relaxationszeit ist ein MaB dafiir, wie schnell sich ein System durch Abgabe oder Aufnahme von Warme einer geander­ten Umgebungstemperatur annahert. Die dimensionslose Temperatur andert sich stets zwischen dem Anfangswert 8(t = 0) = 1 und dem stationaren Wert 8(t -+ (0) = O. Insbesondere ist 8(t = tR) = l/e = 0.3678.

Beispiel 11:

Welche Leistung vir el ist fiir die elektrische Heizung eines Bungalows (Volumen V = 100 m3 , AuBenflache A = 104 m2 , mittlerer Warmedurchgangskoeffizient der AuBenwande k = 0.8W/(m2K)) vorzusehen, damit bei einer minimalen

Page 58: Starthilfe Thermodynamik ||

58 3 Thermodynamische Hauptsatze

AuBentemperatur von '!9au6en,min = -14°C eine Raumlufttemperatur von '!9 B = 22°C gehalten wird? Wie lange dauert bei der ermittelten Leistung im Winter, '!9au6en = DoC, das Aufheizen der Luft im Bungalow auf '!9Bl = lOoC bzw. '!9B2 = 20°C, wenn diese zu Beginn ebenfa11s die konstant vorausgesetzte AuBentemperatur '!9B,O(t = 0) = '!9au6en = O°C aufweist? Die Berechnung sol1 vergleichsweise ohne und mit Beriicksichtigung des Warme­verluststromes durch die AuBenwande erfolgen. Der Warmeverlust in das Erd­reich ist vernachlassigbar.

Losung: Die Leistung der zu installierenden Heizung, die den Warmeverluststrom durch die Wande kompensieren muB, foIgt direkt aus Gl.(3.41)

TV ei = I Over/ust I = k A ('19 B - t9 au6en,min) = 0.8 . 104(22 - (-14)) ~ 3 kW .

Vernachlassigt man bei der Betrachtung des Aufheizprozesses zunachst die Warmever­luste an die Umgebung, so andert sich die Raumtemperatur beginnend bei t9 B ,o = O°C linear nach Gl.(3.50). Die Aufheizzeiten betragen:

t9Bl -t9BO tt = '. ' pVc" = 295 s ~ 5 min und t2 = 589 s ~ 10 min.

Wei

Die Dichte der Luft wurde dabei mit der Zustandsgleichung des idealen Gases (R = 0.287kJ/(kgK), x = 1.4, c" = 0.7175kJ/(kgK)) fUr einen Druck von p = 105 Pa und eine mittlere Raumlufttemperatur von T = 283 K zu p = p/(RT) = 1.231 kg/m3

berechnet. Mit steigender Raumlufttemperatur tritt ein zunehmender Warmeverlust an die Umgebung auf, der den instationaren ProzeB beeinfluBt. Der Temperaturverlauf t9(t) wird dann durch Gl.(3.47) beschrieben. Mit der Relaxationszeit des Systems tR = (M c,,)/(kA) = (pV c,,)/(kA) = 1061 s ~ 17.7 min ergeben sich die Aufheizzeiten

:~:= -tRIn {t9 B ,l - t9au6en - r} = 345s ~ 5.8 min und t2 = 860s ~ 14.3min.

t9B,O - t9au6en - ff Der Vergieich mit den vereinfacht berechneten Werten tt und ti zeigt Unterschiede, die sich insbesondere mit fortschreitendem AufheizprozeB vergr6Bern. AbschlieBend sei bemerkt, daB die in dieser Weise vorgenommene Berechnung das Speicherverm6gen der Bausubstanz nicht beriicksichtigt und damit ebenfalls nur als iiberschiagige Berechnung betrachtet werden kann. Eine genauere Berechnung erfor­dert weitergehende Kenntnisse des Warmetransportes. •

3.5 Der zweite Hauptsatz

Wiihrend der erste Hauptsatz prinzipie11 a11e Prozesse zuliiBt, die das Energieer­haltungsprinzip erfii11en, schrankt der zweite Hauptsatz die Prozesse hinsichtlich

Page 59: Starthilfe Thermodynamik ||

3.5 Der zweite Hauptsatz 59

ihrer Realisierbarkeit ein. Der erste Hauptsatz ist damit fUr die realen Prozes­se eine notwendige, aber keine hinreichende Bedingung. Eine Aussage iiber die ZwangsHiufigkeit der Richtung eines Prozesses trifft nur der zweite Hauptsatz, der aIle diesbeziiglichen Erfahrungen zusammenfaBt.

3.5.1 Das Prinzip der Irreversibilitat

Die Erfahrung zeigt, daB aIle natiirlichen Prozesse in einer bestimmten Rich­tung ablaufen und der reversible ProzeB ein theoretischer Grenzfall ist. Ein Beispiel fUr die IrreversibiliUit realer Prozesse ist der Warmeiibergang zwischen zwei System en unterschiedlicher Temperatur, die durch eine diatherme Wand voneinander getrennt sind. Das Gesamtsystem sei abgeschlossen. Der Warme­strom flieBt von selbst ausschlieBlich von dem System h6herer Temperatur in das System niedrigerer Temperatur, aber nie umgekehrt. Ein entsprechendes Unmoglichkeitsprinzip, welches eine wichtige Erfahrungsgrundlage des zwei­ten Hauptsatzes darstellt, wurde bereits 1850 von R. Clausius formuliert:

Satz 3.3 Wiirme kann nie von selbst von einem Korper niedrigerer auf einen Korper hoherer Temperatur iibergehen.

Analog sind aIle Ausgleichsprozesse, die mit einem Druckausgleich oder einem Konzentrationsausgleich verbunden sind, irreversibel. Bei der EinfUhrung des Begriffes Arbeit hatten wir festgestellt, daB Reibungsarbeit einem System nur zugefUhrt werden kann. Damit ist eine bestimmte ProzeBrichtung verkniipft. In der Begriindung des zweiten Hauptsatzes schreibt M. Planck:

Satz 3.4 Alle Prozesse, bei denen Reibung auftritt, sind irreversibel.

Beim Vergleich der mechanischen Arbeiten bei quasistatischer und nichtstati­scher Kompression bzw. Expansion tritt entsprechend Gl.(3.8) ein stets positiver Anteil, die Dissipationsarbeit WVdiss12 auf. Sie erh6ht die bei der Kompression aufzuwendende Arbeit und verringert die bei der Expansion gewinnbare Arbeit. Bei allen natiirlichen Prozessen wird ein mehr oder weniger groBer Anteil der in Arbeit umwandelbaren Energie dissipiert, d.h. unter Einhaltung des Energieer­haltungsprinzips in eine andere als die gewiinschte Energieform umgewandelt. Technisch gesehen ist das eine Entwertung der Energie. Verallgemeinert gilt der

Satz 3.5 Alle natiirlichen Prozesse sind irreversibel. Bei ihnen nimmt, ver­ursacht durch Energiedissipation (Reibung, plastische Verformung und elektri­scher Widerstand) der Anteil der in Arbeit umwandelbaren Energie abo

Die quantitative Formulierung dieser Zusammenhange erfordert die EinfUhrung

Page 60: Starthilfe Thermodynamik ||

60 3 Thermodynamische Hauptsatze

einer weiteren energetischen ZustandsgroBe, der Entropie, die auf Clausius (1865) zuruckgeht.

3.5.2 Entropie und zweiter Hauptsatz

Eine quantitative Aussage, die die eben besprochenen Erfahrungen zum Rich­tungsablauf von Prozessen berucksichtigt, laBt sich bereits unter Verwendung des erst en Hauptsatzes (3.21) bei Beschrankung auf adiabate Systeme und qua­sistatische Zustandsanderungen ableiten. HierfUr fassen wir die Terme des erst en Hauptsatzes, die ZustandsgroBen enthalten, auf der linken Seite der Gleichung

du + pdv = 8q + 8Wdiss bzw. (du + pdV)ad = 8Wdiss 2: 0 (3.52)

zusammen. Der so erhaltene Ausdruck in Gl.(3.52) ist fUr adiabate Systeme bei irreversiblen Prozessen stets groBer Null und lediglich im Grenzfall des re­versiblen Prozesses gleich Null. Prozesse, fur die sich ein negativer Wert von (du + pdV)ad ergeben wurde, sind nicht moglich. Durch die Wegabhangigkeit von p(v) ist (du+pdv)ad fUr nichtstatische Zustandsanderungen nicht bestimm­bar. Gelingt es jedoch, die Aussage der Gl.(3.52) mit einer ZustandsgroBe zu formulieren, so kann die Anderung dieser ZustandsgroBe uber einen reversiblen VergleichsprozeB berechnet werden. Die mit dem Ausdruck du + p dv ver­knupfte und durch einen real en ProzeB hervorgerufene Zustandsanderung yom Punkt (u, v) nach (u + du, v + dv) laBt sich stets auch durch einen reversiblen VergleichsprozeB (VP) realisieren. 1m reversiblen VergleichsprozeB wird das Vo­lumen durch Verrichten einer quasistatischen Arbeit -Prev dv urn den gleichen Anteil dv wie im nichtstatischen Fall geandert, und die Anderung der inneren Energie wird durch die entsprechende Warme 8qrev herbeigefUhrt3 . 1m Vergleich beider Prozesse gilt unter Berucksichtigung des erst en Hauptsatzes (3.21) und der Gl.(3.7)

du = 8q + 8w = 8q - PSG dv + 8Wdiss = (8qrev - Prevdv)VP, (3.53)

woraus unter Beachtung von Gl.(3.8) die folgenden wichtigen Aussagen fur 8qrev ableitbar sind:

8qrev = du + Prev dv,

8qrev - 8q = -(PSG - Prev)dv + 8Wdiss 2: 0,

8qrev 2: 8q insbesondere (8qrev)oq=O 2: O.

(3.54)

3Eine adiabate Grenze kann nur fUr den realen ProzeB (8q = 0) angenommen werden, da die Warme des reversiblen Vergleichsprozesses (8qrev)6q=O auch in diesem Fall von Null verschieden ist.

Page 61: Starthilfe Thermodynamik ||

3.5 Der zweite Hauptsatz 61

Die Beziehungen (3.54) sind hinsichtlich des ProzeBverlaufes aquivalent zur Gl.(3.52). Die Warme oqrev des reversiblen VergleichsprozeBes ist eine ProzeB­groBe und damit wegabhangig. Aus Gl.(3.53) folgt

oqrev = du(v, T*) + p(v, T*) dv

= [8u(~~ T*) + p(v, T*)] dv + 8u~:*) dT* (3.55)

= M(v, T*) dv + N(v, T*) dT*.

M(v, T*) und N(v, T*) sind stoffabhangige Funktionen vor den Differentialen dv und dT*. Die GroBe T* ist die mit einer empirischen Skala gemessene Tempe­ratur. oqrev ist kein vollsUindiges Differential, denn die Integrabilitatsbedingung [WM94]

8M = 82u(v, T*) + 8p(v, T*) ¥- 8N = 82u(v, T*) 8T* 8T*8v 8T* 8v 8v8T*

ist ganz offensichtlich verletzt. Mit Hilfe des sogenannten integrierenden Fak­tors J.l( v, T*) gelingt es jedoch, den obigen linearen Differentialausdruck in das vollstandige Differential J.loqrev = J.lM dv+ J.lN dT* = ds zu wandeln, dessen In­tegral dann unabhangig von der ProzeBfiihrung ist. Die erhaltene ZustandsgroBe s ist die spezifische Entropie, die analog zu oqrev die gewiinschten Aussagen zum ProzeBablauf ermoglicht.4

4Fur ein vertieftes Verstandnis sei hier kurz das prinzipielle Vorgehen demonstriert. Die Integrabilitatsbedingung

828 82 8 8 8 8T*8v = 8vM* bzw. 8T* (J.LM) - 8v (J.LN) = 0

legt die Dgl.

~(M 8J.L _N8J.L) = 8N _ 8M J.L M* 8v 8v 8T*

fur den integrierenden Faktor J.L fest. Die partielle Differentialgleichung hat unendlich viele Losungen, die zu unterschiedlichen Funktionen 8 fUhren. Wir betrachten lediglich eine spezielle Losung J.L = J.L(T*), die fUr das perfekte Gas Gtiltigkeit haben soli. In diesem Fall ist u = u(T), du = cvdT und 8u(T)/8v = o. Demzufolge ergeben sich die Funktionen M und N zu M(v,T) = p = RT/v und N(v,T) = Cv = const. Unter diesen Voraussetzungen reduziert sich die Dgl. fUr J.L auf die gewohnliche Dgl. (dJ.L)/(J.LdT) = -l/T, deren Losung

1 J.L= CT (3.56)

ist, wobei T die mit dem idealen Gasthermometer meBbare Temperatur ist. C ist eine Konstan­te groBer Null. Allgemein laBt sich zeigen [EI93], daB es eine vom Korper und den Stoffeigen­schaften unabhangige Temperaturfunktion Tthermodyn gibt, deren Kehrwert der integrierende Faktor J.L = l/Tthermodyn ist.

Page 62: Starthilfe Thermodynamik ||

62 3 Thermodynamische Hauptsatze

Satz 3.6 Jedes System besitzt eine extensive Zustandsgrope S, die Entropie, bzw. die zugeordnete spezijische Grope s, deren Differential

ds = du + P dv = dh - vdp = 8qrev Tthermodyn 'Tthermodyn Tthermodyn

(3.57)

ist. In GI.{3.57} ist Tthermodyn die stets positive thermodynamische Tem­peratur, die wegen ihrer Stoffunabhiingigkeit auch als absolute Temperatur bezeichnet wird.

Zwischen der absoluten thermodynamischen Temperatur und der Temperatur T des idealen Gasthermometers besteht der Zusammenhang

Tthermodyn = C T , C > 0 . (3.58)

Beide Temperaturen sind identisch, wenn sie in einem Fixpunkt ubereinstim­men. Ais Referenzzustand hat man den Tripelpunkt des Wassers gewahlt. Fur diesen gilt die Festlegung

Tthermodyn,ref = Tref = 273.16 K. (3.59)

Die thermodynamische Temperatur und die Temperatur des idealen Gasther­mometers stimmen damit uberein, weshalb wir nachfolgend nur noch das Sym­bol T verwenden. Da sowohl T als auch die Anderung der inneren Energie bei konstantem Volumen mefibare Gr6f3en sind, ist entsprechend Gl.(3.57) auch die Anderung der Entropie eine experimentell bestimmbare Grofie. Analog zur in­neren Energie sind keine Absolutwerte bestimmbar. Mit der Entropie steht jetzt eine Zustandsgrofie zur Verfugung, die unabhangig yom Prozefiweg ist und die unter Zugrundelegung eines reversiblen Vergleichs­prozesses stets berechenbar ist. Sie ermoglicht die quantitative Formulierung des zweiten Hauptsatzes. Mit Gl.(3.57) und Gl.(3.54) erhalten wir fUr das adiabate System den zweiten Hauptsatz

(dS)ad ~ 0 { (dS)ad > 0, (dS)ad = 0, (dS)ad < 0,

irreversibler Prozefi , reversibler Prozefi, nicht moglicher Prozefi .

(3.60)

Fur nichtadiabate Systeme gilt entsprechend Gl.(3.54) die Clausiussche Unglei­chung

8qrev = Tds ~ 8q bzw. Tds ~ du - 8w, (3.61)

wobei sich 8qrev auf den Vergleichsprozefi bezieht, der die gleiche Zustandsande­rung wie der reale Prozefi bewirkt.

Page 63: Starthilfe Thermodynamik ||

3.5 Der zweite Hauptsatz 63

1m nichtadiabaten System ist an den Warmetransport stets auch ein Trans­port von Entropie iiber die Systemgrenze gekniipft. GemaB dem Zusammenhang bqrev = Tds erniedrigt sich die Entropie eines Systems durch Warmeabgabe. Sie erhOht sich durch Warmeaufnahme. Allgemein gilt nach Gl.(3.57) fUr die Entro­pieanderung eines geschlossenen Systems bei quasistatischer Zustandsanderung unter Verwendung extensiver GroBen

dS = ~ (dU + dV) = bQ + bWdiss T P T T'

(3.62)

wobei die Systemtemperatur T gleich der Temperatur TSG an dem Teil der Systemgrenze ist, an dem die \Varme iibertragen wird. Die Entropieanderung eines geschlossenen Systems spaltet man in den Entro­pie transport bSTransp iiber die Systemgrenze und die Entropieerzeugung bSirrev durch irreversible Prozesse im Inneren des Systems auf:

dS = bSTransp + bSirrev . (3.63)

In geschlossenen Systemen tritt eine Entropieanderung durch Transport bSTransp nur durch Warme auf

bQ > bSTransp = -T < 0,

SG (3.64)

wobei in Systemen, die sich nicht im Gleichgewicht befinden, prinzipiell auch mehrere Warmen bQ, bei unterschiedlichen Temperaturen TSGi iibertragen wer­den konnen. Bei offenen Systemen tritt dariiber hinaus noch ein an den Stoff­strom gebundener Entropietransport auf, der im Abschnitt 5.3 behandelt wird. Die Entropieproduktion

's. - bWdiss _ bWel bW R 0 U 'rrev - T - T + T 2: (3.65)

bei einer quasistatischen Zustandsanderung kann durch die Reibungsarbeit ei­nes Riihrers bzw. durch die elektrische Arbeit eines Widerstandes verursacht werden. Ein weiterer Beitrag zur Entropieproduktion tritt bei nichtstatischen Prozessen auf, die im Abschnitt 3.5.5 behandelt werden. Die dissipierte Ener­gie W ergibt sich durch Multiplikation der Gl.(3.65) mit T:

(3.66)

Sie ist im allgemeinen groBer als die Dissipationsarbeit und ein MaB fUr den bei dem ProzeB eingetretenen Verlust an Arbeitsfahigkeit der Energie (vergl. Abschnitt 3.5.5).

Page 64: Starthilfe Thermodynamik ||

64 3 Thermodynamische Hauptsatze

Die Entropiebilanz, die die zeitliche Anderung der Entropie des Systems be­schreibt,

dS 8STransp 8Sirrev· (). ( ) dt = dt + ~ =STransp t + Sirrev t (3.67)

• enthalt den Entropiestrom STransp durch Transport tiber die Systemgrenze

• und die Entropieproduktion Sirrev durch Irreversibilitaten. Durch den Pro-duktionsterm unterscheidet sich die Entropiebilanz von der Energiebilanz. Es gibt daher keinen Entropieerhaltungssatz. Will man die Aufspaltung der Entropieanderung eines nichtadiabaten Systems in einen Transport- und einen Produktionsterm vermeiden, so bildet man ein adiabates Gesamtsystem. Dieses umfaBt das betrachtete System und aIle Teil­systeme, die in Wechselwirkung stehen. Die Entropieanderung des adiabaten Gesamtsystems ist:

Da die Summe aller Transportanteile Null ergibt, ist (dSges)ad gleich der Summe der Entropieproduktion der Teilsysteme. Diese muB stets gleich oder groBer Null sein. Zusammenfassend lassen sich die folgenden gleichwertigen Aussagen formulieren:

Satz 3.7 Zweiter Hauptsatz: Die Entropie eines geschlossenen adiabaten Systems kann nicht abnehmen. Sie nimmt bei irreversiblen Prozessen zu und bleibt bei reversiblen Prozessen konstant

( dS) ad = dSirrev 2:: 0 . (3.69)

Fur ein geschlossenes nichtadiabates System gilt

o Sirrev = dS - 8 STransp 2:: 0 . (3.70)

Fur ein aus mehreren Teilsystemen gebildetes adiabates Gesamtsystem ist

(dSges)ad = (L dSj ) = L 8Sirrev,j 2:: o. . ad .

(3.71) J J

Beispiel 12: Zwei Teilsysteme A und B, die ein abgeschlossenes Gesamtsystem bilden, besit­zen eine gemeinsame diatherme Grenze. Ftir die Temperaturen gelte TB > TA .

Page 65: Starthilfe Thermodynamik ||

3.5 Der zweite Hauptsatz 65

Bestimmen Sie die differentielle Entropieanderung dS des Gesamtsystems im Zeitintervall dt!

Lasung: Aus der Erfahrung ist bekannt, dafi infolge TB > TA yom Teilsystem B zum •

Teilsystem A ein Warmestrom Q flieBt. Mit dem Warmestrom ist auch ein Entro-piestrom verbunden. Fur das abgeschlossene Gesamtsystem ist die innere Energie U = U A + U B = const und demzufolge betragen die differentiellen Anderungen der

• Teilsysteme dUA = -dUB = 18QI = I Q Idt. Volumenanderungsarbeit pdV und Dis-sipationsarbeit 8Wdiss werden bei diesem ProzeB nicht verrichtet. Somit folgt aus Gl.{3.57) fur die differentiellen Entropieanderungen

Die Entropieanderung (dSges)ad des Gesamtsystems wahrend der Zeitdauer dt

(3.72)

setzt sich aus den Entropieanderungen der Teilsysteme additiv zusammen, da die Entropie eine extensive ZustandsgroBe ist. Wie man unmittelbar der Gl.{3.72) bzw.

entnimmt, ist wegen TB > TA und 18QI > 0 auch dS > O. Bei dem Transportpro­zeB nimmt die Entropie des abgeschlossenen Gesamtsystems zu! Es handelt sich urn einen irreversiblen ProzeB. Nur im theoretischen Grenzfall TA = TB wird die Warme reversibel ubertragen. Der zeitabhangige Vorgang bis zum Temperaturausgleich wird in [Ib97] dargestellt. •

3.5.3 Die Entropie als ZustandsgroBe

Mit der Entropie steht eine weitere thermodynamische Koordinate zur Verfligung, die den Warmetransport zwischen System und Umgebung charakte­risiert, Gl.(3.61). Uber die Anderung der Entropie und die Anderung des Volu­mens (Arbeitskoordinate) lassen sich damit die Wechselwirkungen des Systems mit der Umgebung allgemein beschreiben. Neben dem p, v-Diagramm, welches besonders zur Darstellung der Volumen- und Druckanderungsarbeit geeignet ist, benutzt man das T, s-Diagramm zur Darstellung der reversibel iibertrage­nen Warme. Urn das T, s-Diagramm flir einen bestimmten Stoff aufzustellen, benotigt man die thermische und energetische Zustandsgleichung. Die Entropie laBt sich dann

Page 66: Starthilfe Thermodynamik ||

66 3 Thermodynamische Hauptsatze

mit Hilfe der Gln.(3.57)

d (T ) = ~(d d ) = cv(T,v)dT (~Ou P(T'V))d 8 ,v T u+p v T + Tov + T v,

d8(T p) = ~ (dh - vdp) = Cp(T,p) dT + (~ oh _ v(T,p) )dp 'T T Top T

(3.73)

berechnen. Die Integration ist unabhangig vom Weg moglich. Die Entropieande­rung ist in Abhangigkeit von den ZustandsgroBen des Anfangs- und des Endzu­standes darstellbar, wobei man als Anfangszustand einen Bezugszustand wahlt. Wir betrachten jetzt ein ideales Gas mit konstanten spezifischen Warmekapa­zitaten (perfektes Gas). Unter Beachtung der thermischen Zustandsgleichung p = pRT bzw. dp/p = dp/p+dT/T und der Beziehungen ou(v,T)/ov = 0 und oh(p, T)/op = 0 (Abschnitt 2.4) vereinfachen sich die Dgln.(3.73) zu:

dT dv dT dp d8(V, T) = cVT + R-:;;, d8(p, T) = CpT - R-:p'

dT dp dp dp d8(p, T) = Cv-T - R- , d8(p, p) = Cv- - Cp - •

P P P

(3.74)

Diese Gleichungen lassen sich einfach integrieren, da ihre Koeffizienten konstant sind. Wir erhalten die Entropiefunktionen 8(V, T), 8(p, T), die weitere Formen der energetischen Zustandsgleichung perfekter Gase darstellen:

iT dT /v dv T V 8-81 =CV -T +R - = CvlnT +Rln-,

n ~ v I ~

iT dT {PdP T p 8 - 81 = Cp - - R - = Cp In - - R In - .

Tl T Pl P TI PI

(3.75)

Die Gleichungen sind unabhangig von der speziellen Zustandsanderung. Eine fur die praktische Anwendung zweckmaBige Form dieser Gleichungen unter Beachtung der Beziehungen

lautet:

Cp-Cv=R, 'U" - Cp ,. - , Cv

1 Cv = --IR , x-

x Cp= --R

x-I

p ( p ) X!.::!l. ( VI ) X!.::!l. ( T ) x~ 1 _.!.=!.L - = - e Cv = - e Cv = - e cp-cv .

PI PI V TI

(3.76)

(3.77)

Die Anderung der Entropie bei einer isochoren oder isobaren Zustandsanderung eines perfekten Gases ergibt sich unmittelbar aus den Gln.(3.75) zu:

T ~ 8 - 81 = Cv In- -+ T=Tle Cv Isochore,

TI (3.78) T ~

8 - 81 = Cpln- -+ T=Tle Cp Isobare. Tl

Page 67: Starthilfe Thermodynamik ||

3.5 Der zweite Hauptsatz 67

1m T, s-Diagramm eines perfekten Gases, Bild 17, sind die lsochoren und die lsobaren somit Exponentialfunktionen. Die lsochore verlauft steiler als die lsobare, da cp > Cv ist, Bild 17. Die reversible Zustandsanderung eines adiabaten Systems, bei der die Entropie konstant bleibt (ds = 0), bezeichnet man als isentrop. Die isen­trope Zustandsanderung hat beispielsweise eine groEe Bedeutung fur die reversiblen Vergleichs­prozesse der Gase in Verdichtern und Turbinen. Wir betrachten einen quasistatischen ProzeE von 1 -+ 2 im T, s-Diagramm. Die Flache unter der Kurve im T, s-Diagramm entspricht der

T

T,

2 v, p,

S, S2 S

Bild 17 T, s-Diagramm

ubertragenen vVarme q12 und der im Inneren des Systems dissipierten Arbeit Wd1Ss12. Nach Gl.(3.62) ist

(3.79)

Nur bei reversiblen Prozessen ist die zu- oder abgefUhrte Warme Q12rev = f12 Tds gleich der Flache unter dem Zustandsverlauf. Die Entropieanderung ist bei Warmezufuhr (oQ > 0) positiv. Die Entropieanderung einer Flussigkeit oder eines Festkorpers, fUr die p =const und cp = Cv = Cfl gelten, genugt der Gleichung

und mit Cfl = const ist

T2 S2 - Sl = Cjl ln T1 .

Fur isobare Zustandsanderung gilt stets unabhangig yom Stoff

(3.80)

(3.81)

Eine Zustandsanderung in einem nichtadiabaten System kann auch dann isen­trop verlaufen, wenn die dissipierte Energie durch Warmeabgabe genau kom­pensiert wird.

Page 68: Starthilfe Thermodynamik ||

68 3 Thermodynamische Hauptsatze

3.5.4 Reversible und irreversible Zustandsanderungen in adiabaten Systemen

Bei reversiblen Prozessen verlauft die Zustandsanderung in adiabaten Systemen isentrop. Mit ds = 0 bzw. s - SI = 0 ergeben sich fUr perfekte Gase aus den Gln.(3.77) die Isentropenbeziehungen:

(3.82)

Das Verhaltnis der spezifischen Warmekapazitaten x charakterisiert den An­stieg der Isentropen eines perfekten Gases im p, v-Diagramm

I - const _ Plvt P s=const - -- - --

V X V X -t

ap(v, s) const =-x--.

av vx+l (3.83)

x ist der Isentropenexponent. Die gelegentlich verwendete Bezeichnung Adiabatenexponent soUte vermieden werden. Die Gl.(3.82) ist nur fUr reversi­ble Zustandsanderungen giiltig. Da x > 1 ist, hat die Isentrope einen groBeren Anstieg im p, v-Diagramm als die Isotherme, Bild 18. Die Gleichung der Iso­thermen (Zustandsanderung bei konstanter Temperatur) plT=const = constlv = RT Iv = PI vI/v = P2 vdv ist eine gleichseitige Hyperbel im p, v-Diagramm. Die durch den Zustandspunkt 1 im p, v-Diagramm verlaufende Isentrope grenzt entsprechend der Aussage des zweiten Hauptsatzes (dS)ad ~ 0 den Zustands­bereich ab, der ausgehend von diesem Punkt bei adiabater Systemgrenze nicht erreichbar ist. Dieser Bereich ist im Bild 18 schraffiert gekennzeichnet. Fur aUe yom Punkt 1 ausgehenden naturlichen Prozesse (reibungsbehaftet, irreversibel) liegt der Zustandspunkt 2 in adiabaten Systemen au- P P Berhalb des schraffierten Be­reiches. Nur im GrenzfaU des reversiblen, adiabaten Prozesses liegt 2rev auf der durch den Punkt 1 verlau-fenden Isentropen. v, v v

Bild 18 p, v-Diagramm eines perfekten Gases

Analog befinden sich im T, s-Diagramm die Endpunkte der Zustandsanderung bei realem ProzeBverlauf im adiabaten System stets im Bereich zunehmender Entropie. Bild 19 zeigt das am Beispiel der reibungsbehafteten Kompression von 1 -t 2 und der Expansion von 3 -t 4, wobei quasistatische Zustandsanderungen vorausgesetzt werden. Die unter dem Zustandsverlauf dargesteUte schraffierte Flache kennzeichnet im adiabaten ProzeB die dissipierte Energie

Page 69: Starthilfe Thermodynamik ||

3.5 Der zweite Hauptsatz

[2 T(s) ds = Wdiss12' (3.84)

Sie ist im reversiblen Grenz­fall, der durch den senkrech­ten Verlauf der Isentropen im T, s-Diagramm gekennzeichnet ist, gleich Null. Mit den Jsen­tropenbeziehungen (3.82)

v

T

T, 4

Bild 19 Adiabate Zustandsanderungen

69

s

darf man nur die ZustandsgroBen in den reversiblen EndzusUinden 2rev und 4 rev ,

z.B.

und

berechnen. VerHiuft auch die reibungsbehaftete Zustandsanderung quasista­tisch, so kann der reale ZustandsverlauP in Anlehnung an die Isentropenbezie­hung durch eine Poly trope mit p vn = const und -00 < n < 00 beschrieben werden. Fur die irreversible adiabate Kompression gilt dann stets n > x, und fUr die irreversible adiabate Expansion ist 1 ~ n < x, Bild 19.

3.5.5 Die Dissipationsenergie

Bei allen naturlichen Prozessen wird Energie dissipiert. Die Dissipationsener­gie \II, Gl.(3.66), ist die mit der Entropieproduktion verbundene energetische GroBe. Zu ihrer Interpretation ordnen wir dem realen ProzeB des geschlossenen Systems im Bild 20 einen reversiblen VergleichsprozeB zu. Der Energietrans­port zwischen System und Umgebung vollzieht sich durch Volumenanderungs­arbeit sowie durch Warmetransport und Dissipationsarbeit (oWR+OWel ). Dabei andern sich die Arbeitskoordinate V und die Entropie 8. Ausgehend yom glei­chen Anfangszustand (81, Vi) fuhren beide Prozesse das System in den gleichen Endzustand (81 + d8, Vi + dV). Die Anfangs-, End- und aIle Zwischenzustande des reversiblen Vergleichsprozesses sind Gleichgewichtszustande, in denen die

5Bei einem adiabaten Kompressor erwiirmen sich infolge von Reibung Zylinder und Kol­ben zusatzlich. Jedem Volumen und damit jeder Kolbenstellung entsprechen im Vergleich mit dem reversiblen ProzeB andere Wertepaare p, T des Systems, die durch eine Poly­trope beschreibbar sind. 1m Fall der Kompression sind sowohl der Druck als auch die Temperatur hoher. Durch den unterschiedlichen Integrationsweg unterscheiden sich damit auch die Volumenanderungsarbeiten des reversiblen und des irreversiblen Prozesses. Es gilt

W 12 = - It Prev(V)dV + WR,12 = - 112 Ppo/ytrop(V)dV.

Page 70: Starthilfe Thermodynamik ||

70 3 Thermodynamische Hauptsatze

Zustandsvariablen definiert sind. Der reale ProzeB kann quasistatisch oder nichtsta- CD tisch ablaufen, so daB nur ~ die Kenntnis des Druckes --CI- -PSG und der Temperatur TSG an der Systemgrenze vorausgesetzt werden kann. Die Anderung aller

--I-------~ 'Ow rev' '6Q,.,.

Bild 20 Reversibler und irreversibler ProzeB von 1 -+ 2

ZustandsgroBen, beispielsweise der inneren Energie U(S, V) und der Entropie S(V,U)

dU = dUrev und dS = dSrev , (3.85)

sind fUr beide Prozesse gleich. Die Anderung der inneren Energie berechnet man mit dem ersten Hauptsatz (3.20) und GI.(3.16)

dU = 8Qrev - PrevdV = 8Q + 8W = 8Q - PSGdV + 8WR + 8Wel . (3.86)

GI.(3.63) ergibt in Verbindung mit GI.(3.57) die Entropieanderung

8Qrev 8Q () dS = -T. = 8STransp,rev = 8STransp,irrev + 8Sirrev = -T + 8Sirrev. 3.87

rev SG

Aus beiden Gleichungen sind die Entropieproduktion 8Sirrev und die Dissipa­tionsenergie 8'11 = TSG 8Sirrev, GI.(3.66), direkt bestimmbar. Dazu stellen wir GI.(3.87) nach 8Sirrev urn. In

ersetzen wir

8Qrev - 8Q = (Prev - PSG )dV + 8W R + 8Wel

mit GI.(3.86). Fur die Entropieproduktion gilt damit

(3.88)

(3.89)

~ 1 [ ~ ( ) TSG - Trev ] USirrev = T- 8WR + uWel - PSG - Prev dV + T. 8Qrev ~ 0 (3.90) SG rev

und fUr die Dissipationsenergie

[ ( ) TSG - Trev ] 8'11 = TSG8Sirrev = 8Wdiss - PSG - Prev dV + T. 8Qrev ~ O. (3.91)

rev

Page 71: Starthilfe Thermodynamik ||

3.5 Der zweite Hauptsatz

Mit

PSG> Prev fUr dV < 0, TSG > T rev fUr 8Qrev > 0, PSG < Prev fUr dV > 0, TSG < T rev fur 8Qrev < 0

71

sind aIle Terme der Entropieproduktion positiv. Wie man der GI.(3.90) ent­nimmt, wird eine Energiedissipation verursacht durch:

• die Dissipationsarbeit in Form von Reibungsarbeit W R (Ruhrerarbeit) und elektrischer Widerstandsarbeit WeI,

• den Mehraufwand bzw. den verminderten Gewinn an Volumenanderungs­arbeit bei nichtstatischer Zustandsanderung (vergl. Aschnitt 3.2.2),

• den Warmetransport in einem Temperaturgefiille bei nichtstatischer Zu­standsanderung.

Den Zusammenhang der Energiedissipation mit dem Verlust an Arbeitsfahig­keit wollen wir ebenfalls an dem betrachteten geschlossenen System erlautern. Das System besitzt Arbeitsfiihigkeit, wenn es sich nicht im thermischen und mechanischen Gleichgewicht mit der Umgebung befindet. Wir nehmen TI > Tu und PI > Pu an (Index u kennzeichnet den Umgebungszustand) und untersu­chen den ProzeB, der das System yom Anfangszustand l(PI, Td in den Zustand 2u(Pu, Tu) uberfUhrt, in dem es keine Arbeitsfahigkeit mehr besitzt. System und Umgebung fassen wir zu einem abgeschlossenen System zusammen und wenden auf beide Teilsysteme den ersten Hauptsatz an. Fur das System gilt

(3.92)

und fur die Umgebung gilt unter der Voraussetzung konstanter Werte fUr Pu und Tu

.6.Uu = Qu - Pu .6. Vu mit Qu = -QI2" und .6. Vu = -(112" - Vi). (3.93)

Als nutzbare Arbeit W Nutz ist die an der Kolbenstange (bzw. an einer damit verbundenen Kurbelwelle) verfugbare Arbeit zu betrachten. Sie berechnet sich aus der Systemarbeit WI2u < 0 (Entspannung) vermindert urn die gegen den konstanten Luftdruck zu leistende Arbeit Pu .6. Vu. Andererseits ist W Nutz gleich der Summe der .Anderungen der inneren Energien des Systems und der Umge­bung, Gln.(3.92) und (3.93). Daher gilt

(3.94)

Page 72: Starthilfe Thermodynamik ||

72 3 Thermodynamische Hauptsatze

Ersetzt man in Gl.(3.94) ,:)..uu mit Hilfe des zweiten Hauptsatzes

( ) () D.uu PuD.Vu D.8ges ad = (82" - 8d + D.8u = 82" - 81 + Tu + --r,:- = 812",irrev ~ 0,

also durch

t1Uu = -Tu(S2" - Sd + Pu(V2" - Vi) + Tu SI2",irrev,

so erhalt man

IWNutzl = -WNutz = U1 - U2" + pu(VI - V2..) - Tu(SI - S2..)

- TuS I2",irrev .

(3.95)

(3.96)

Die maximale Arbeit wird bei reversibler ProzeBfUhrung (SI2u,irrev = 0) verrich­tet

(3.97)

Gl.(3.97) charakterisiert die Arbeitsfahigkeit eines geschlossenen Systems, die von dem Systemzustand (Tl' Vi) sowie vom Umgebungszustand (Tu,Pu) abhangt. Bei realen Prozessen tritt in Verbindung mit der Entropieproduk­tion stets ein Verlust an gewinnbarer Arbeit

j 2U

I WVerlust I = IWNutzlmax -IWNutzl = TuS l2u ,irrev = 1 dw (3.98)

in Hohe der dissipierten Energie auf. Will man umgekehrt vom Zustand der Umgebung ausgehend im System den Zustand 1 einstellen, so ist Arbeit auf­zuwenden (W2u1 > 0). Der minimale Arbeitsaufwand ist fUr den reversiblen ProzeB erforderlich, wahrend die Dissipation im realen ProzeB den Arbeitsauf­wand erhoht6 . Betrachtet man als Endzustand einen frei wahlbaren Zustand 2, so ist die abgeleitete Aussage auf beliebige Prozesse erweiterbar, und es gilt der

Satz 3.8 Rei allen realen Prozessen tritt eine Entropieproduktion und dam it eine Energiedissipation auf, die verbunden ist mit einer Entwertung der Ener­gie hinsichtlich ihrer Arbeitsfiihigkeit. 1m reversiblen Prozep ist stets ein Mi­nimum an Arbeit aufzuwenden bzw. ein Maximum an Arbeit zu gewinnen. 1m Vergleich zweier Prozesse ist derjenige zu bevorzugen, bei dem weniger Entro­pie produziert und weniger Energie dissipiert wird.

Neben den Aussagen zum ProzeBablauf besitzt der zweite Hauptsatz damit insbesondere auch Bedeutung fUr die Bewertung von Prozessen.

6Die VergroBerung des Arbeitsaufwandes durch die Irreversibilitat des Wii.rmeiiberganges wird im Abschnitt 7.3.2 behandelt.

Page 73: Starthilfe Thermodynamik ||

3.6 Fundamentalgleichungen und Maxwell-Relationen

3.6 Fundamentalgleichungen und M axwe 11-Relationen

73

Wir betrachten fur das geschlossene System im Bild 10 einen reversiblen ProzeB (8Wel = 0, 8WR = 0). Die Anderung der inneren Energie ergibt sich dann aus der Beziehung

du = 8qrev - pdv = Tds - pdv, (3.99)

die aus dem erst en Hauptsatz (3.21) und der Gl.(3.57) fUr die Entropie folgt. Die innere Energie des Gases steht mit der Arbeitskoordinate v und mit der den Warmetransport beschreibenden Systemkoordinate s in Kontakt mit der Umgebung. Die spezifische innere Energie wird daher durch die Funktion u = u(s, v) und das tot ale Differential

d ( ) - 8u(s,v)d 8u(s,v)d u s, v - 8s s + 8v v (3.100)

beschrieben. Gl.(3.99) gilt entsprechend der Definitionsgleichung der Entropie (3.57) allgemein, wobei die Entropieanderung dann auch die Irreversibilitaten des Prozesses berucksichtigt. Aus dem direkten Vergleich der Gl.(3.99) mit dem totalen Differential (3.100) erhalten wir

8u(s, v) = T und 8s

8u(s, v) 8v = -po (3.101)

Die innere Energie u(s, v) erweist sich nach den Gln.(3.101) in Analogie zur Feldtheorie der Mechanik als thermodynamisches Potential, da sich aIle ther­modynamischen GraBen aus ihm berechnen lassen. Nach den Gln.(3.101) sind p = p(s, v) und T = T(s, v). Stellen wir die letzte Beziehung nach s = s(T, v) urn und eliminieren s in p(s, v), so erhalten wir die thermische Zustandsglei­chung p = p(T, v) in der bekannten Form und analog die energetische Zu­standsgleichung u = u(T, v). Das Potential u = u(s, v) ist damit der thermischen und energetischen Zu­standsgleichung gleichwertig. Auf Grund dieser Bedeutung bezeichnet man u(s, v) als Fundamentalgleichung oder kanonische Zustandsgleichung. Sie berucksichtigt die Aussagen des ersten und zweiten Hauptsatzes. Die gleiche Bedeutung haben die Enthalpie h(s,p), die freie Energie f(T, v) und die freie Enthalpie g(T,p) nach Gl.(2.6). Wir leiten jetzt die Maxwell-Relationen her und in diesem Zusammenhang einige wichtige Beziehungen, die das Stoffverhalten der Systeme charakterisieren. Die Gleichungen gelten fUr einphasige einfache Fluide, deren Zustand durch zwei

Page 74: Starthilfe Thermodynamik ||

74 3 Thermodynamische Hauptsatze

unabhangige Variable festgelegt ist. Die betreffenden Funktionen seien im p, T­Bereich ( l3r) bis mindestens zur zweiten Ordnung partiell differenzierbar. Mit der Fundamentalgleichung der inneren Energie

d ( ) - Td d - 8u(s, v)d 8u(s, v)d u s, v - s - p v - 8s s + 8v v (3.102)

erhalten wir aus der Ubereinstimmung der gemischten 2. Ableitungen (Integra­bilitatsbedingung)

82u(s, v) aT(s, v) 82u(s, v) 8v8s 8v 8s8v

unmittelbar die erste Maxwell-Relation aT(s, v) 8p(s,v)

8v 8s

8p(s, v) 8s

(3.103)

Analog lassen sich aus den Potentialen der Enthalpie, der freien Energie und der freien Enthalpie weitere Beziehungen ableiten, die in Tabelle 3.1 zusammen­gestellt sind.

I Funktion Fundamentalgleichung I Maxwell-Relation I Innere Energie u ( s, v) du(s, v) = Tds - pdv 8T(s,v) = _ 8p(s,v)

8v 8s

bzw. u(s, p) du(s, p) = T ds + ;;'dp 8T(s,p) _ ...!.. 8p(s,p) 80 - 02 8s

Enthalpie h(s,p) dh(s,p) = Tds +vdp 8T(s,p) _ 8v(s,p) 8p - 8s

Freie Energie f(T, v) df(T, v) = -s dT - pdv 8s(v,T) _ 8p(v,T) """"& - 7ft'

Freie Enthalpie g(p, T) dg(p, T) = -sdT + vdp 8s(p,T) __ 8v(p,T) 8v - 8T

Tabelle 3.1 Thermodynamische Potentiale und Maxwell-Relationen

Mit Hilfe der Maxwell-Relationen lassen sich u.a. wichtige Aussagen zum Zu­standsverhalten ableiten. Wir wenden uns einigen Beziehungen zu. Ausgangs­punkt der Herleitung ist die Definitionsgleichung der Entropie (3.57). Vnter Beriicksichtigung von du(v, T) = ~dv + ;;'dT und Cv = 8u(v, T)/aT erhalten wir

[8u(v, T) ] Tds(v, T) = dU(v, T) + pdv = 8v + P dv + CvdT. (3.104)

Vergleicht man die partiellen Ableitungen des vollstandigen Differentials der Entropie ds(v, T) mit den partiellen Ableitungen in Gl.(3.104), so erhalt man die Beziehungen:

8s(v, T) _ 1 [8u(v, T) ] und 8s(v, T) = Cv 1 8u(v, T) 8v -T 8v +p aT T T aT (3.105)

Page 75: Starthilfe Thermodynamik ||

3.6 Fundamentalgleichungen und Maxwell-Relationen 75

Aus der erst en Gleichung folgt nach Anwendung der Maxwell-Relation 8s(v, T)/8v = 8p(v, T)/8T eine Beziehung fUr die partielle Ableitung der in­neren Energie nach dem spezifischen Volumen

8u(v, T) = T 8s(v, T) _ = T 8p(v, T) _ = (T _ 1) 8v 8v P 8T pp 'Y . (3.106)

Dieser Differentialquotient laBt sich direkt mit der thermischen Zustandsglei­chung p(v, T) berechnen. Mit Hilfe der GI.(3.105) und der Maxwell-Relation 8s(v, T)/8v = 8p(v, T)/8T ist noch eine Aussage tiber die Abhangigkeit der Warmekapazitat ev(v, T) von v moglich. Ftir die gemischten 2. Ableitungen der Entropie erhalten wir

~(8s(v,T)) =!.. 8ev(v,T) = ~(8s(v,T)) = ~(8p(v,T)) 8v 8T T 8v 8T 8v 8T 8T .

Hieraus folgt die Beziehung

8cv (v, T) = T82p(v, T) 8v 8T2'

(3.107)

deren Integration fUr T = To = const

(3.108)

ergibt. Die spezifische Warmekapazitat Cv laBt sich bei bekanntem ev(vo, T) mit Hilfe der thermischen Zustandsgleichung bestimmen. Auf gleichem Wege erhalt man ausgehend von der Fundamentalgleichung der Enthalpie die Beziehungen

8h(p, T) = _ T 8v(P, T) = ~ [1 !.. 8p(p, T)] = (1 _ (.IT) 8p v 8T p +p aT v fJ,

1 8ep(p, T) 82v(p, T) T 8p = aT2 (3.109)

P J 82V(p,T) I ep(p, To) = ep (Po , To) - To aT2 T=To dp

PO

und schlieBlich

(3.110)

Page 76: Starthilfe Thermodynamik ||

76 4 Zustandsanderungen perfekter Gase

Neben den hier angegebenen Gleichungen sind weitere Zusammenhange fUr spe­zielle Zustandsanderungen (z.B. fUr die Isentrope) ableitbar.

Beispiel 13: Leiten Sie fUr ein reales Gas, das der van der Waalsschen Zustandsgleichung geniigt, die energetische Zustandsgleichung u( v, T) her, und stellen Sie unter der Annahme einer abschnittsweise konstanten spezifischen Warmekapazitat Cv = const die Isentropenbeziehung f(T, v) = 0 dar! Lasung: Das Differential der inneren Energie ist unter Beachtung der Gl.(3.106)

d ( T) = ou(v, T) d ou(v, T) dT = [ToP(v, T) _ ] d dT u v, ov v + 8T 8T P v + Cv .

Die van der Waals Gl.(2.47), P = ;:!;, - {}X, hat die Differentialquotienten

op(v, T) _ ~ d 02p(v, T) _ 2.. oCv(v, T) _ 8T -v-b un 8T2 -T OV -0. (3.111)

Damit erhalten wir fUr das Differential der inneren Energie du(v, T) {}xdv + cv(T) dT. Die Warmekapazitat Cv ist nur eine Funktion der Temperatur. Mit der mittleren spezifischen Warme ergibt sich fUr das Integral

u(v, T) = u(vo, To) - a (~ - ~) + Cvl; (T - To). v Vo 0

(3.112)

1m zweiten Teil der Aufgabe sei Cv = const. Fur die isentrope Zustandsanderung (ds = 0) folgt aus Gl.(3.104) und Gl.(3.106)

[ou(v,T) ] op(v,T) Tds(v, T) = 0 = ov + P dv + Cv dT = T 8T dv + Cv dT

und mit Gl.(3.111) v~bdv = v~bd(v - b) = -Cv <¥' . Diese Gleichung integrieren wir zwischen den Punkten Vo, To und v, T. Das Ergebnis

v - b = (TO) 7t Vo - b T

(3.113)

ist die Isentrope eines van der Waals Gases. •

4 Zustandsanderungen perfekter Gase

Prozesse bewirken eine Anderung des Systemzustandes. Dabei sind unterschied­liche Prozesse oft durch wenige typische Verlaufe der Zustandsanderungen be­schreibbar. Diese wollen wir fUr perfekte Gase am Beispiel des geschlossenen

Page 77: Starthilfe Thermodynamik ||

4.1 Elementare Zustandsanderungen 77

Systems beschreiben. Die Zustandsanderung verlaufe dabei quasistatisch. Die gewonnenen Erkenntnisse sind prinzipiell auch auf offene Systeme iibertragbar, was im Abschnitt 5 gezeigt wird. Ebenso sind komplizierte Prozesse meist in Teilprozesse zerlegbar, die sich mit den zu behandelnden Zustandsanderungen beschreiben lassen.

4.1 Elementare Zustandsanderungen

In einigen Beispielen ha~en wir bereits die Berechnung verschiedener Zu­standsanderungen idealer Gase demonstriert. An dieser Stelle solI ein zusam­menfassender Uberblick iiber die elementaren Zustandsanderungen gegeben werden, bei denen jeweils eine charakteristische ZustandsgroEe konstant ist. Wir unterscheiden:

• Isochore Zustandsanderungen mit V = const bzw. dV = dv = 0, die in Behaltern mit starrer Systemgrenze auftreten.

• Isobare Zustandsanderungen mit p = const bzw. dp = 0, bei denen eine konstante Kraft auf den beweglichen Teil der Systemgrenze wirkt.

• Isotherme Zustandsanderungen mit T = const bzw. dT = 0, die bei idealen Gasen stets auch Zustandsanderungen konstanter innerer Energie (du = 0) und konstanter Enthalpie (Isenthalpen, dh = 0) sind. Ent­sprechend dem ersten Hauptsatz, Gl.(3.20), muE bei einer Kompression des Systems die in Form von Volumenanderungsarbeit zugefiihrte Energie als Warme abgegeben werden. Umgekehrt ist bei der Expansion Warme zuzufiihren. 1m reversiblen Grenzfall konnte die Warmezu- bzw. -abfuhr auch bei der konstanten Umgebungstemperatur T = Tu = const erfolgen.

• Isentrope Zustandsanderungen mit S = const bzw. dS = ds = 0, die den Grenzfall des reversiblen Prozesses in Systemen mit adiabater Grenze (thermisch ideal isoliert) beschreiben, vergl. Abschnitt 3.5.4.

Zum besseren Verstandnis sollen die Prozesse im p, v- und T, s-Diagramm dargestellt werden, Bild 21. Fiir perfekte Gase entspricht das T, s-Diagramm auch einem h, s-Diagramm. Die Isotherme ist im p, v-Diagramm eine gleich­seitige Hyperbel p = RT /v = const/v. Die Isentrope ist eine Potenzfunktion p = const/vx . In einem Zustandspunkt verlauft die Isentrope steiler als die Isotherme (lap/avis! > lap/avITJ. 1m T, s-Diagramm sind die Isochoren und Isobaren jeweils Exponentialfunktionen, Gln.(3.78), wobei der Anstieg der Iso­choren steiler ist, als der der Isobaren durch den gleichen Zustandspunkt.

Page 78: Starthilfe Thermodynamik ||

78

1m p, v-Diagramm sind die P Volumenanderungs- und die Druckanderungsarbeit sowie im T, s-Diagramm die Warme QI2rev jeweils als Flachen darstellbar, Bild 21.

4 Zustandsanderungen perfekter Gase

T l<n<K S-n=K

V-n-­p-n=Q

2_

r---~~~~-T-n=l

IWV12 .... 1 V S

Bild 21 Elementare Zustandsiinderungen

4.2 Poly trope Zustandsanderungen

Eine Reihe von Prozessen, wie z.B. die Kompression und die Expansion mit Warmezu- oder -abfuhr kann man nicht mit den elementaren Zustandsanderun­gen beschreiben. Das trifft auch auf adiabate Systeme zu, wenn die Verdichtung und die Expansion irreversibel verlaufen. In diesen Fallen nutzt man fiir die Be­schreibung des Zustandsverlaufes eine Poly trope. Fiir poly trope Zustandsande­rungen gilt in Anlehnung an die funktionelle Beschreibung der lsentropen der Zusammenhang

P v n = PI vf = P2 v~ = const . (4.1)

Der Polytropenexponent n kann hierbei im Unterschied zum lsentropenexpo­nenten beliebige Werte -00 < n < +00 annehmen. Er ist yom jeweiligen ProzeBverlauf abhangig. Die Poly trope ist damit fiir die Beschreibung beliebi­ger realer Prozesse geeignet, gegebenenfalls unter Verwendung abschnittsweise veranderlicher Exponenten n. Die den elementaren Zustandsanderungen ent­sprechenden Werte von n sind im T, s-Diagramm des Bildes 21 eingetragen. Bei einer reibungsbehafteten Kompression in einem adiabaten System ist n > x, was bei gleicher Volumenanderung einem hoheren Enddruck im Vergleich zur lsentrope entspricht. Wird bei der Kompression Warme abgefiihrt, so sinkt der Enddruck, und n wird kleiner. Fiir den reversiblen ProzeB gilt dann 1 < n < x. Ersetzt man in der Polytropenbeziehung Gl.(4.1) P oder v mit Hilfe der ther­mischen Zustandsgleichung pv = RT, so ist die bei der Zustandsanderung auftretende Temperaturanderung bestimmbar. Es gilt

i = (~) n;l = (~~r-I. (4.2)

1m allgemeinen bleibt damit bei der Polytropen keine ZustandsgroBe konstant, und es wird Energie sowohl in Form von Arbeit als auch Warme iiber die Sy-

Page 79: Starthilfe Thermodynamik ||

4.3 Berechnung der Zustandsgrof3en 79

stemgrenze transportiert. Der Exponent n kann durch das Experiment bestimmt werden.

4.3 Berechnung der ZustandsgroBen

Zur Beschreibung der ZustandsgroBen einfacher Systeme ist es notwendig, den Anfangszustand durch zwei Zustandsgrof3en, z.B. T1,Pl, vorzugeben. Dariiber hinaus muB die Art der Zustandsanderung und in der Regel eine nicht konstante ZustandsgroBe fUr den Endzustand, z.B. P2, bekannt sein. Die weiteren thermi­schen ZustandsgroBen sind dann mit Hilfe der thermischen Zustandsgleichung und des Zusammenhanges fUr die jeweilige Zustandsanderung berechenbar. Bei­spielsweise erhalt man fUr eine Isochore

(4.3)

Fiir die anderen elementaren Zustandsanderungen sind die Zusammenhange in Tabelle 4.1 dargestellt.

Isobare I Isotherme I Isentrope Poly trope

!!l. 11 ~ (~)!.= (R)X:l (~l ~= (R) n:l V2 T2 Pl

E.!. 1 ~ (~)x = (R) x~l (~r = (R) n~l P2 Vl

11 !!l. 1 (~) x~l = (~r-l (~) n~l = (~r-l T2 V2

82 - 81 Cp In¥- -R ln~ 0 Cv InTh+Rln!'.2. T v

WV12rev -Pl(V2 - VI) RTlln~ ~r (F) X~l -11 x-I Pl

P1Vl r (~ ) n~l n-l Pl -11

WD12rev 0 WV12rev KWV12rev nWV12rev

Q12rev Cp (T2 - Td -WVl2rev 0 Cv~=~(T2 - Td

Tabelle 4.1 Zustandsanderungen idealer Gase

Bei Kenntnis von zwei ZustandsgroBen im Anfangs- und Endzustand sind dann aIle weiteren ZustandsgroBen berechenbar, unabhangig von der Art der Zu­standsanderung. Die innere Energie und die Enthalpie ergeben sich aus den energetischen Zustandsgleichungen (2.41) und (2.42) bzw. aus der Definitions­gleichung der Enthalpie (2.6). Die Entropie kann stets aus der fUr perfekte Gase integrierten Form (3.75) oder aus der differentiellen Form (3.74) bestimmt wer­den. Fiir die isochore Zustandsanderung folgt z.B. mit dv = 0 bzw. V2 = VI

1 CvdT ds = r(du + pdv) = ---;y- bzw. (4.4)

Page 80: Starthilfe Thermodynamik ||

80 4 Zustandsanderungen perfekter Gase

Die spezifischen Warmekapazitaten Cp und c" lassen sich gegebenenfalls aus x und R, Gln.(3.76), berechnen.

4.4 Berechnung der ProzeBgroBen

1m Unterschied zu den ZustandsgroBen ist die Berechnung der ProzeBgroBen stets abhangig vom Verlauf der Zustandsanderung. Dieser wird durch die jewei­ligen Funktionen p(v), v(p) und T(s) beschrieben. Der ProzeBverlauf muB fUr die Integration der Warme sowie fUr die Volumen- und Druckanderungsarbei­ten, Gln.(3.29) und (3.28), bekannt sein. Betrachten wir zunachst die Arbeiten, so erhalt man fUr die isochore Zustandsanderung mit dv = 0 und V2 = VI

(WVI2}isoch = - i2PdV = 0 bzw. (WD12}isoch = i2 vdp = VI(P2 - PI). (4.5)

Analog liefert die Integration unter Beriicksichtigung der Beziehung (4.1) fUr eine Poly trope die Volumenanderungsarbeit

(4.6) = ~[(V2)I-n -1] = ~[(p2)n~1 -1]

n - 1 VI n - 1 PI

und die Druckanderungsarbeit

/2 l /2 _l npIvI [(P2) n~l ] (wDdpolyt = V(p) dp = Pi'VI P ndp = -- - - 1 . lIn - 1 PI

(4.7)

Der aus dem Vergleich der beiden Gleichungen resultierende Zusammenhang (WD12)po/yt = n( WVI2)po/yt folgt auch direkt aus der Polytropenbeziehung

pvn=const -+ vndp+npvn-Idv=O -+ vdp=-npdv.

Sind die Arbeiten bekannt, so geht man bei der Berechnung der Warme zweckmaBig vom ersten Hauptsatz (3.20) aus. Bei isochorer Zustandsanderung folgt fUr die Warme mit Wdiss = 0 und dv = 0:

(QI2)isoch = U2 - UI = c,,(T2 - TI). (4.8)

1st die Zustandsanderung polytrop, so ergibt sich mit Gl.(4.6)

(4.9)

Page 81: Starthilfe Thermodynamik ||

5 Bilanzierung offener Systeme 81

B-1

Aus Gl.(4.9) ist mit (pdPl) -n = T2/T1, Cv = R/(x - 1) und W12diss = 0 die Warme bei reversibler polytroper ProzeBfUhrung in Abhangigkeit der Tempe­raturanderung bestimmbar

en ist als spezifische Warmekapazitat bei reversibler polytroper Zustandsande­rung zu deuten. Die Warme laBt sich nach Gl.(3.57) allgemein auch mit der Beziehung

Q12rev = 12 T(s) ds (4.11)

berechnen. Die fUr die Poly trope demonstrierte Vorgehensweise ist auf die anderen Zu­standsanderungen analog anwendbar. Die Ergebnisse sind in Tabelle 4.1 unter Verwendung spezifischer GroBen zusammengefaBt. Dem Leser empfehlen wir, die Gleichungen selbst herzuleiten.

5 Bilanzierung offener Systeme

Ein offenes thermodynamisches System besitzt im Gegensatz zum geschlossenen System mindestens einen Eintritts- oder einen Austrittsquerschnitt, iiber den ein Massenstrom fiieBt. 1m allgemeinen Fall stromen in das Bilanzgebiet (of-

• • fenes System) Ni Massenstrome Mi ein und N j Massenstrome Mj aus. Die offenen Systeme haben in der Technik groBe Bedeutung. Beispiele fUr offe­ne Systeme sind Pumpen, Verdichter, Thrbinen, Reaktoren, Warmeiibertrager, Dampferzeuger, ganze Anlagen, wie Kraftwerke, aber auch ein Stromrohrenab­schnitt (Rohrleitungsabschnitt), Bilder 22 und 23. Fiir die offenen Systeme stellt man, ausgehend von den Erhaltungssatzen, Massen- und Energiebilanzen auf. Hierzu grenzt man einen geeigneten Kontrollraum, das Bilanzgebiet, abo Die zweckmaBige Wahl der Bilanzgrenze ist von der Aufgabenstellung und der VerfUgbarkeit der BilanzgroBen an der gewahlten Grenze abhangig. Beispiels­weise kann die aus einem Thrboverdichter und Kiihler bestehende Anlage im Bild 22 als Gesamtsystem bilanziert werden. Interessiert man sich aber fUr die ZustandsgroBen (P2, T2) am Austritt des Verdichters, so muB man die Bilanz­grenze urn das Einzelaggregat ziehen. Beriicksichtigung in den Bilanzen finden stets nur die Strome, die die jeweilige Bilanzgrenze iiberschreiten sowie die an dieser iibertragenen Warmen und Arbeiten. Die Bilanzen erlauben darnit zwar

Page 82: Starthilfe Thermodynamik ||

82 5 Bilanzierung offener Systeme

keine speziellen Aussagen tiber die Vorgange innerhalb des Bilanzgebietes, sie besitzen aber den Vorteil, daB Gleichgewichtszustande lediglich am Ein- und Austrittsquerschnitt vorliegen mtissen.

M.Tl'Pl lr ---, i-----"2-------i

1 •

: MKW• T KW.ein ..;;:--->,---:-...-

: MKW.T KW.o ... I

I 1 _____ 3 I

ML.Tl' PI ML.T3,P3

Bild 22 Beispiele offener Systeme: Thrbine, Warmeubertrager, Verdichter mit Kuhler

1m Inneren des Bilanzgebietes durfen durchaus Nichtgleichgewichtszustande auftreten. Die ZustandsgroBen wie Geschwindigkeit C(Sk' t), Druckp(sk' t), Dich­te p(Sk' t), Temperatur T(Sk' t) usw. sind im Bilanzgebiet tiber dem Querschnitt der Stromrohre gemittelte GroBen, die von der Zeit t, aber im Unterschied zum geschlossenen System auch von der Ortskoordinate Sk abhangen konnen. Offenen Systemen kann man kontinuierlich Warme und Arbeit zufiihren oder entziehen. Die Arbeit, die durch Wellen (Pumpen, Turboverdichter, Turbinen) tiber die Bilanzgrenze tibertragen wird, bezeichnet man als technische Arbeit

• Wt und die auf die Zeit bezogene GrOBe Wt = 8Wt!dt als technische Leistung. Sind die Warme- und Massenstrome, die Leistung sowie die ZustandsgroBen in den Ein- und Austrittsquerschnitten zeitunabhangig, so befindet sich das Sy­stem in einem stationaren Zustand. 1m Unterschied zum geschlossenen System, konnen im offenen System stationare Prozesse ablaufen, die mit einer Zu­standsanderung des Fluides zwischen Ein- und Austrittsquerschnitt verbunden sind. Viele Maschinen, Apparate und Anlagen arbeiten tiberwiegend im stati­onaren Betrieb. Lediglich die An- und Abfahrprozesse sind instationar. Aus Ubersichtsgrtinden wahlen wir ftir die weiteren Betrachtungen ein Bilanzge­biet mit nur einem Eintrittsquerschnitt 1 und einem Austrittsquerschnitt 2. Wir geben dem Bilanzgebiet die Gestalt eines raumfesten Stromrohrenabschnittes (Rohrleitungsabschnitt) der Lange ~Sk' Bild 23.

5.1 Die Massenbilanz

Der Stromrohrenabschnitt im Bild 23 erweitere sich nur schwach in sk-Richtung, so daB von einer eindimensionalen Fadenstromung ausgegangen werden kann.

Page 83: Starthilfe Thermodynamik ||

5.2 Die Energiebilanz 83

In der Ein- und Austrittsebene wird der Stromrohrenabschnitt durch raumfeste Flachen 1 und 2 an den Stellen Sk und Sk + fls k begrenzt. Raumfeste Begrenzungsflachen bedeuten hier, daB sich die Lange des Stromrohren­abschnittes fls k zeitlich nicht andert. In diesem Abschnitt kenn­zeichnet der Index 1 den Ort Sk

und nicht den Anfangszustand zum Zeitpunkt t. Der Index 2 kennzeichnet den Ort Sk + fls k .

Die im Stromrohrenabschnitt zum Zeitpunkt t enthaltene Fluidmasse

Bild 23 Stromrohrenabschnitt als Bilanzgebiet

Sk+ll.Sk

betragt M = J p(~, t) A(~) d~. Durch den Ein- und Austrittsquerschnitt

der Stromrohre flieBen die Massenstrome aMI/at = MI = CI PI Al und

M2 = C2 P2 A 2. Da Fluidmasse innerhalb des Stromrohrenabschnittes weder ent­stehen noch verschwinden kann, gilt die Massenbilanz

(5.1)

Gl.(5.1) besagt: Wenn zum Zeitpunkt t im Querschnitt 2 der austretende Mas-•

senstrom M2 grafter ist als der im Querschnitt 1 eintretende Massenstrom •

MI , dann muft sich im Inneren des Stromrahrenabschnittes die Masse M zeitabhiingig verringern, d.h., es muft aM/at < 0 sein. So erklart sich auch das Vorzeichen in Gl.(5.1) auf der rechten Gleichungsseite. Die zeitliche Anderung der Masse im Bilanzgebiet ist moglich, da Gase kompres­sibel sind. Gl.(5.1) ist der Kontinuit§tssatz der Fadenstromung in integraler Form. Fur stationare FlieBprozesse lautet die Kontinuitatsgleichung

• • CIPIAI = C2P2A2 = cpA =M= P V= const. (5.2)

5.2 Die Energiebilanz

Bei der Herleitung der Energiebilanz am Beispiel des offen en Systems im Bild 24 berucksichtigen wir die Schwerkraft als einzige Feldkraft. Vnter dieser Vor­aussetzung kann man die Energie E des Fluides (bzw. die spezifische Energie

Page 84: Starthilfe Thermodynamik ||

84 5 Bilanzierung offener Systeme

e) im Bilanzgebiet als Summe von innerer, kinetischer und potentieller Energie definieren:

Sk+~Sk Sk+~Sk

E= J (u+; +gz)pAd~= J epAd~. (5.3) e=Sk e=Sk

1m Zeitintervall dt findet fiber die Bilanzgrenze ein Transport der Massen dMl = • •

M 1 dt im Eintrittsquerschnitt und dM2 = M 2 dt im Austrittsquerschnitt statt. Uber die ManteloberfHiche des Kontrollraumes wird Energie in Form von Warme

• 8Q = Q (t) dt und Arbeit transportiert. Keine Warme solI fiber den Ein- und Austrittsquerschnitt flieBen. Die fiber die Welle zu- oder abgefiihrte mechanische

• Arbeit wird als technische Arbeit 8Wt = Wt dt bezeichnet. Wird neb en der

• • Wellenleistung W Welle zusatzlich noch eine elektrische Leistung WeI fibertragen,

•• • so ist diese in die technische Leistung W t = W Welle + Wei einzubeziehen. Die Energiebilanz besagt dann: Die A nderung der Energie dE des Bilanzgebietes ist gleich der DifJerenz der stofJstromgebundenen ein- und austretenden Energien (e1dMl -e2dM2) plus der Arbeit der Oberfliichenkriifte plus der iibertragenen Wiirme plus der technischen A rbeit, Bild 24. Die Arbeit der Oberflachenkrafte besteht nur aus der Verschiebearbeit pdV =

• p v dM = p v M dt am Ein- und Austrittsquerschnitt. Die Arbeit der Schub-spannungskrafte sei am Mantel des Bilanzgebietes Null und fiber dem Ein- und Austrittsquerschnitt vernachlassigbar. Es gilt:

dE =( Ul + 1 + gZl)dMl + Plv1dM1+ Q dt+ Wt dt

- (U2 + 1 + gZ2 )dM2 - P2V 2dM2.

Die in den Stromungsquerschnit­ten 1 und 2 zu verrrichtende spezifische Verschiebearbeit pv faBt man zweckmaBig mit der spe­zifischen inneren Energie u zur spezifischen Enthalpie h = U + pv als weitere energetische Zu­standsgroBe zusammen. Die tech­nische Arbeit Wt ist somit die ein­zige in der Energiebilanz

Bild 24 Offenes System

(5.4)

Page 85: Starthilfe Thermodynamik ||

5.3 Die Entropiebilanz 85

(5.5)

auftretende Arbeit. Gl.(5.5) lautet in der Verallgemeinerung auf Ni eintretende und N j austretende Massenstrame

8 NJ 2 N; 2 • • E ~. ( CJ ) • ( C· ) Q12 + Wt12= 7ft + ~ Mj hj + "2 + gZj - L Mi hi + ~ + gZi .

j=1 i=1

(5.6)

In den weiteren Betrachtungen beschranken wir uns auf einen eintretenden und einen austretenden Massenstrom und auf stationare Prozesse. In diesem Fall erhalten wir aus Gl.(5.6) unter Verwendung der technischen Leistung • • • •

Wt12=M Wtl2 und des Warmestromes Q 12=M q12

(5.7)

in der massebezogenen (spezifischen) Schreibweise. Die Gln.(5.5), (5.6) und (5.7)

enthalten nur GraBen, die an der Oberflache des Bilanzgebietes bestimmbar sind. 1m Inneren des Bilanzgebietes durfen dissipative Prozesse auftreten.

5.3 Die Entropiebilanz

Gegenuber dem geschlossenen System wird beim offenen System mit einem Mas­senstrom uber die Ein- und Austrittsquerschnitte auch Entropie transportiert. 1m betrachteten differentiellen Zeitabschnitt dt gilt

• • dS1 = 81 dM1 = 81 M 1 dt und dS2 = 82 dM2 = 82 M 1 dt .

Der jeweils bei der Temperatur TSGk des k-ten Abschnittes an der Bilanzgrenze • •

ubertragene Warmest rom Qk fiihrt den Entropiestrom SQk mit sich, wahrend •

die Leistung Wt die Entropie nicht andert. Innerhalb des Stromrahrenabschnit-•

tes bewirken irreversible Prozesse die Entropieproduktion Sirr~ O. Die Entropie

Page 86: Starthilfe Thermodynamik ||

86 5 Bilanzierung offener Systeme

innerhalb des Bilanzgebietes erfahrt durch die genannten Entropiestrome eine zeitliche A.nderung. Die Entropiebilanz lautet unter Beriicksichtigung von Ni ein-, N j austretenden Stoffstromen und Nk iibertragenen Warmestromen

dS N.. NJ • Nk. • • •

cit = L Mi Si - L Mj Sj + L SQk + Sirrev = STransp + Sirrev· (5.8) i=1 j=1 k=1

1m Unterschied zum Massen- und Energieerhaltungssatz gibt es keinen Erhal­tungssatz der Entropie. Bei realen Prozessen tritt eine Entropieproduktion auf, • Sirrev> o. Die Entropieproduktion des stationaren Prozesses laBt sich mit Hilfe der GI.(5.8) berechnen. Mit einem eintretenden und einem austretenden Mas-

• • • senstrom M 1 = M 2 = M erhalten wir die Beziehung

(5.9)

in der die Warmest rome stets vorzeichenbehaftet einzusetzen sind.

5.4 Die technische Arbeit

Durch Beriicksichtigung des erst en Hauptsatzes in der Energiebilanz laBt sich die Definitionsgleichung der technischen Arbeit ableiten. Hierzu ist der erste Hauptsatz auf ein Fluidelement dM = pdV = pAdsk des Bilanzraumes anzu­wenden. Wahrend im ersten Hauptsatz, GI.(3.27), die Indizes 1 und 2 Zustande des glei­chen Fluidelementes (Lagrangesche Betrachtungsweise) zu verschiedenen Zeit en charakterisieren, beschreiben die Indizes 1 und 2 in der Energiebilanz des offenen Systems, GI.(5.7), den Zustand zweier verschiedener Fluidelemente (Eulersche Betrachtungsweise) zur gleichen Zeit an verschiedenen Orten. Zwischen diesen Betrachtungsweisen laBt sich folgender Zusammenhang herstellen. Die im Zeitintervall dt in den Bilanzraum des offenen Systems eintretende Mas­se dM mit der Geschwindigkeit c betrachten wir als ein geschlossenes System. Wir verfolgen die Masse auf ihrem Weg von 1 nach 2. Entsprechend dem er­sten Hauptsatz andert sich die innere Energie dieses Massenelementes beim

Durchstromen des Bilanzraumes in der Zeit At = t2 - t1 = fsS/ck+c:'Sk ~ durch

die Warme Q12 = ft:2 Q dt, durch Volumenanderungsarbeit und durch Dis­sipationsarbeit infolge der Scherkrafte. In gleicher Weise andert sich auch die Enthalpie des Massenelementes.

Page 87: Starthilfe Thermodynamik ||

6 Technische Anwendungen 87

Da in einer Stromung innerhalb des offenen Systems das Fluidelement 2 am Ort Sk + tl.sk zum Zeitpunkt t den gleichen Zustand besitzt wie das Fluidelement 1 zum Zeitpunkt t + tl.t am gleichen Ort Sk + tl.sk , darf man in der Energiebilanz des offen en Systems Gl.(5.7) die Enthalpiedifferenz h2 - hI durch den erst en Hauptsatz Gl.(3.27) ersetzen. Wir erhalten die Berechnungsgleichung der tech­nischen Arbeit

(5.10)

in Abhangigkeit der Druckanderungsarbeit, der Anderungen der kinetischen und der potentiellen Energie und der Dissipationsarbeit bei einer quasistati­schen Zustandsanderung. Die Gl.(5.10) ist insbesondere fUr die Berechnung des reversiblen Grenzfalles

(5.11)

von Bedeutung, da im allgemeinen die Dissipationsarbeit nicht bekannt ist. Ver­nachlassigt man die kinetische und die potentielle Energie, so ist die technische Arbeit

/

2rev

Wt12rev = I V dp = W DI2 (5.12)

gleich der Druckanderungsarbeit.

6 Technische Anwendungen

Die Anwendung der Bilanzgln.(5.2) und (5.7) sowie der Gl. (5.10) wollen wir an typischen Beispielen der Energietechnik demonstrieren. Besondere Bedeutung kommt der Festlegung der Bilanzgrenze, der Wahl der unabhangigen Variablen und der Berechnung der Enthalpie zu. Fur die wichtigsten Anwendungen be­nutzt man: Ideales Gas: dh = cp dT bzw. im FaIle Cp = const -+ h2 - hI = Cp(T2 - Td. Ideale Fliissigkeit mit p = const: dh = du + v dp = Cfl dT + v dp.

6.1 Adiabate Stromungsprozesse

In der Technik lassen sich viele Stromungsvorgange kompressibler Fluide z.B. in Leitungen, Diffusoren, Dusen usw. durch adiabate Prozesse annahern. Diese

Page 88: Starthilfe Thermodynamik ||

88 6 Technische Anwendungen

Prozesse sind durch q12 = 0 und Wtl2 = 0 gekennzeichnet. Setzt man daruber hinaus 6..epot = 0, so vereinfacht sich die Energiebilanz (5.7) fUr stationare Prozesse zu

c2 c2

hI + ~ = h2 + ; = ho = const

und die differentielle Form der Gl.(5.10) zu

o = v dp + 8Wdiss + cdc.

Die Ruheenthalpie ho bleibt bei diesem Vorgang konstant. Die Gl.(6.1)

entspricht der Bernoulli-Gleichung der Gasdynamik. Bei fehlender Reibung verlauft die Zustandsanderung isentrop. Gl.(6.1) gilt in adiabaten System en so­wohl fUr reversible als auch fur irrever­sible Prozesse. Der EntspannungsprozeB eines perfekten Gases, z.B. in einer Duse, hat den im h,s-Diagramm, Bild 25, dar­gestellten Verlauf. Fur perfekte Gase ist

h ho hI

h2

PI C 2

1

""2 c\ P2 ""2

---------- 2 2,ev

51 52 5

(6.1)

(6.2)

Bild 25 1 -+ 2 adiabate Entspannung, 1 -+ 2rev isentrope Entspannung

aus dem T, s-Diagramm durch einfache Anderung des OrdinatenmaBstabes ent­sprechend 6..h = cp6..T das h, s-Diagramm ableitbar. Bei einem irreversiblen adiabaten ProzeB legt die Entropiezunahme S2 - SI > 0 den Zustandspunkt 2 nach der Entspannung zusammen mit P2 fest. Als wei teres Beispiel betrachten wir den Drosselvorgang einer p16tzlichen Querschnittsverengung, wie sie z.B. in einer Armatur oder bei einer zur Volu­menstrommessung genutzten Blende auftritt. Durch die plotzliche Querschnitts­erweiterung nach dem Blendenquerschnitt reiBt die Stromung ab, Bild 26.

Es entsteht ein Wirbelgebiet, das erst in groBerer Entfernung stromabwarts durch die sich wie­der anlegende Stromung ver­schwindet. Der durch die Verwir­belung hervorgerufene Druckver­lust 6..Pv = PI - P2 > 0

Bild 26 Drosselvorgang durch Blende im T, s-Diagramm

• hangt von dem Flachenverhaltnis AI AB und dem Volumenstrom V abo Er laBt sich naherungsweise mit Hilfe des Impulssatzes berechnen [Ib97], worauf wir

Page 89: Starthilfe Thermodynamik ||

6.2 Der Verdichter 89

hier nicht naher eingehen. Wir geben den Druckverlust vor. Unter den anfangs getroffenen Voraussetzungen und bei Vernachlassigung der Anderung der kine­tischen Energie folgt aus der Energiebilanz (6.1) h2 = hI. Die adiabate Drossel­stromung ist also naherungsweise ein Vorgang, bei dem die Enthalpie vor und nach der Drossel gleich ist. Wie wir im Abschnitt 2.4 gezeigt haben, hangen bei idealen Gasen die Enthalpie und die inn ere Energie nur von Tab. Deshalb bleibt beim Drosselvorgang eines idealen Gases die Temperatur konstant1 (T2 = Td.

Der adiabate Drosselvorgang ist mit einer Entropiezunahme verbunden. Ganz allgemein gilt zunachst nach der Gl.(3.75) fUr die Entropieanderung

(6.3)

Da fur den betrachteten Drosselvorgang des idealen Gases h2 = hI, T2 = Tl

und q12 = 0 sind, folgt aus Gl.(6.3)

S2 - Sl = R In PI = (6.S)ad = 6.sirrev > O. P2

(6.4)

Die Drosselung ist ein typisch irreversibler ProzeB, der in der Regel auch durch nichtstatische Zwischenzustande gekennzeichnet ist. Nahert man den Zustands­verlauf durch die Isotherme eines quasistatischen Vergleichprozesses an, so folgt aus Gl.(3.62) Wdiss12 = T 1(S2 - sd· Die Reibungsarbeit Wdiss12 ist dann gleich der im Bild 26 schraffierten Flache im T, s-Diagramm.

6.2 Der Verdichter

Der VerdichtungsprozeB kann technisch mit Kolbenverdichtern oder Turbover­dichtern verwirklicht werden. Wir wollen den Vorgang zunachst ideal ohne Reibungsverluste und ohne Berucksichtigung des schadlichen Raumes bei Kol­benverdichtern untersuchen. Setzen wir bei den Kolbenverdichtern weiterhin voraus, daB die periodische Arbeitsweise durch Mehrzylinderanordnungen und Druckkessel geglattet wird, so konnen Turbo- und Kolbenverdichter einheit­lich mit den fUr stationar durchstromte Bilanzraume giiltigen Gleichungen be­schrieben werden. Von Interesse ist die Zustandsanderung, die moglichst wenig Verdichterarbeit erfordert. Wie wir dem Bild 27 entnehmen, ist die technische

1 Bei realen Gasen iindert sich die Temperatur beim Drosselvorgang. Dieses Verhalten nennt man Joule-Thomson-Effekt. Er wird in der Kaltetechnik genutzt. Wir schlieBen den Joule-Thomson-Effekt hier aus.

Page 90: Starthilfe Thermodynamik ||

90

Arbeit Wtl2 bei einer iso­thermen Kompression ge­ringer als bei einer isentro­pen. Zweckma:6ig ist des­halb eine Kiihlung der Ver­dichter. Diese ist durch P1 die Konstruktion begrenzt T1 nur bei Kolbenverdichtern m6glich. Mehrstufige Tur­boverdichter arbeiten

.- - - -----, • •

• •

6 Technische Anwendungen

v Bild 27 Bilanzraum eines Verdichters mit

p, v-Diagramm

deshalb oft mit Zwischenkiihlung. Das Gas durchstr6mt einen Warmeiibertra­ger, bevor es in die nachste Verdichterstufe eintritt. Man halt damit die Gastem­peratur in werkstoff- und schmierungstechnisch erforderlichen Grenzen. Aber auch bei Kolbenverdichtern ist die fUr isotherme Verdichtung erforderliche in­tensive Kiihlung technisch nicht realisierbar. Der VerdichtungsprozeB wird des­halb durch eine poly trope Zustandsanderung pvn = const mit 1 < n < x beschrieben, vergl. Abschnitt 4.2.

Fiir die weitere Betrachtung setzen wir perfekte Gase, vernachlassigbare ki­netische und potentielle Energie und isentrope Zustandsanderung voraus. Die Energiebilanz (5.7) vereinfacht sich damit zu

x-I

WtI2rev = h2rev - hI = Cp(T2rev - TI) mit T2rev = TI (::) >< (6.5)

Die gleiche Beziehung la:6t sich mit Gl.(5.11) unter Verwendung der Isentropen­beziehung (3.82) herleiten:

2rev 2rev

Wtl2rev= J v(p)dp=PfvI J p-iedp= X:1PIVl[(::)X~I -1]. (6.6) 1 1

Beim realen ProzeB ist bedingt durch die Reibung ein Mehraufwand an techni­scher Arbeit erforderlich (Wt12 > Wtl2rev). Die Verdichtungstemperatur T2 des realen Prozesses ist gr6:6er als T2rev , Bild 28. Die Lage des Punktes 2 hangt von der Konstruktion und Ausfiihrung des Verdichters ab und ist thermodynamisch einfach nicht vorherbestimmbar. Der reale Proze:6 kann durch Messung der

Page 91: Starthilfe Thermodynamik ||

6.3 Die Gasturbine

ZustandsgroBen am Verdichteraustritt oder durch die Angabe des Verdichterwir­kungsgrades

WtI2rev h2rev - hI 'T]V,isentrop = --- = h h

Wt12 2 - I (6.7)

beschrieben werden. Fur die Arbeit und die Antriebsleistung des realen Prozesses

erhiiJt man damit

T 2 T2 ··········Z··········· T2rev f----~r

S1 S2 S

Bild 28 VerdichtungsprozeB

Wt12rev •• • WtI2 =

'T]V,isentrop und Wt12=M Wt12 = PI VI Wt12·

Die tatsachliche Verdichtungstemperatur folgt aus der Energiebilanz

91

(6.8)

(6.9)

Die Berechnung des realen Prozesses setzt gemaB dieser Vorgehensweise stets die vorhergehende Berechnung des reversiblen Prozesses voraus.

6.3 Die Gasturbine

Die Gasturbine ist neben anderen Anwendungen ein Teilaggregat des Flugzeug­Turbinenstrahltriebwerkes. 1m Kraftwerk setzt man sie zum Antrieb des Gene­rators ein. Dem verdichteten Arbeitsmittel wird in der Brennkammer oder in einem Warmeubertrager Energie zugefuhrt, bevor es in die Turbine eintritt und dort unter Arbeitsabgabe entspannt wird. Wir betrachten hier den Entspan­nungsprozeB in der Turbine, Bild 29.

Naherungsweise verlauft die Zustandsanderung des Ga­ses in der Turbine adiabat. Die Anderung der potentiel­len und der kinetischen Ener­gie des Arbeitsmittels ist ver­nachlassigbar. U nter dieser Voraussetzung und der An­nahme eines perfekten Gases

T

2rev I ------

S1

Bild 29 Bilanzraum einer Turbine mit T, s-Diagramm

Page 92: Starthilfe Thermodynamik ||

92 6 Technische Anwendungen

erhalten wir fur die reversible technische Arbeit bei isentroper Zustandsande­rung die Gleichungen:

Wt12rev = h 2rev - hI = Cp(T2rev - Td

2rev

= ! v(p)dp= X:1RT1[(::f<;1 -1]. I

(6.10)

Bei realer ProzeBfuhrung, vergleiche Bild 29, ist die Turbinenaustrittstempera­tur T2 > T 2rev . Durch Dissipation tritt ein Verlust an gewinnbarer technischer Arbeit ein (iwt12revi > iWt12I). Die bei der Entspannung tatsachlich nutzbare technische Arbeit hangt vom Turbinenwirkungsgrad

wt12 h2 - hI 'T/T,isentrop = --- = h

Wt12rev 2rev - hI (6.11)

abo Fur die von der Turbine abgegebene Leistung gilt:

•• • [(P2) "';1 ] W t12 = M 'T/T,isentrop Wt12rev = M 'T/T,isentrop Cp TI PI - 1 . (6.12)

Beispiel 14: Eine warmeisolierte Turbine wird mit einem perfekten Gas (cp = 1.2 kJ/(kg K) und R = 0.286 kJ/(kg k)) stationar betrieben. Die ZustandsgroBen des Gases betragen im Eintrittsquerschnitt: {)l = 7500 C, PI = 1 MPa und CI = 80 m/s und im Austrittsquerschnitt: ()2 = 3650 C, P2 = 0.1 MPa und C2 = 100 m/s.

1. Wie groB ist die spezifische technische Arbeit Wt12, die das Gas in der Turbine verrichtet?

2. Wie groB ist die Anderung der spezifischen Entropie bei diesem ProzeB?

3. Welche spezifische technische Arbeit Wt12rev konnte das Gas bei reibungs­freier Durchstromung der Turbine verrichten, und wie groB ist der isen­trope Turbinenwirkungsgrad?

Losung: Nach GI.(5.7) ist mit ql2 = 0 und Z2 = Zl die spezifische technische Arbeit des realen Prozesses

1 22 Wt12 = Cp({)2 - t?d + 2"(£:2 - q) = -462000 + 1800 = -460.2kJ/kg.

Da der Austrittszustand des realen Prozesses vollstandig bekannt ist (Bild 29), laBt sich nach GI.(3.57) die Entropiezunahme aus

ds = .!.(dh - vdp) = Cp dT _ R dp T T P

Page 93: Starthilfe Thermodynamik ||

6.4 Die Wasserturbine 93

durch Integration zu

T2 P2 ~8 = 82 - 81 = Cp In- - Rln- = 0.092kJ/(kgK) = (~8)ad > 0

Tl PI

berechnen. Die Entropiezunahme tritt in einem adiabaten System auf, so daB der ProzeB irreversibel ist. Bei reibungsfreier adiabater (isentroper) ProzeBfiihrung ist die Arbeit

2rev

Wtl2rev = J 1 2 2 X [(P2)X~1] 1 2 2 v(P) dp + -(C2 - Cl) = --RTI - - 1 + -(C2 - Cl) 2 x-I PI 2

1

gewinnbar. Mit P2rev = P2 und x = cp/cv = Cp/(cp - R) = 1.313 folgt Wt12rev = -516.6 kJ /kg. Der isentrope Wirkungsgrad betragt

'l]T,lSentrop = Wtl2/Wtl2rev = 0.891. •

6.4 Die Wasserturbine

Wasser ist ein inkompressibles Arbeitsfluid mit p ;:::;; const. Entsprechend der Kontinuitatsgl.(5.2) bzw. c1A1 = cA = const ist die Geschwindigkeitsande­rung nur von der Querschnittsanderung abhangig. Die Anderung der kineti­schen Energie ist praktisch meist vernachliissigbar. Die Wasserturbine nutzt die Anderung der potentiellen Energie des Fluides, Bild 30. Ein Beispiel ist das Pumpspeicherwerk. Unter den getroffenen Voraussetzungen ergibt sich die spe­zifische reversible technische Arbeit der Turbine aus der Energiebilanz Gl.(5.7) mit q12 = 0 zu

1 Wtl2rev = h 2rev - hI + g(Z2 - Zl) = U2rev - Ul + -(P2 - pd + g(Z2 - Zl). (6.13)

p

Weiterhin gilt fUr Wt12rev laut Gl.(5.10)

Wtl2rev = ~ /2 dp + g(Z2 - Zl) = ~(p2 - pd + g(Z2 - zd . PIP

(6.14)

Der Vergleich der Gln.(6.13) und (6.14) zeigt, daB beim reversiblen ProzeB U2rev = Ul ist. Die innere Energie andert sich nur beim realen ProzeB. Nach dem ersten Hauptsatz (3.21) ist

(6.15)

Page 94: Starthilfe Thermodynamik ||

94 6 Technische Anwendungen

Die Verluste beim Durchstromen der Turbine erhohen die Temperatur T2 des Wassers im Abstrom der Turbine. Obwohl diese Temperaturerhohung nur

wenige 1/100 K betragt, nutzt man T2 zur Wirkungsgradmessung der Turbine. Die Bi-lanzgrenze urn die Turbine lafit sich nun so wahlen, daB PI = P2 = Pu (Umgebungs-druck) ist. Aus Gl.(6.13) folgt damit

(6.16)

das Maximum an nutzbarer technischer Arbeit. Mit dem Turbinenwirkungsgrad 'T/T,is = Wt12/Wt12rev und dem Massenstrom erhalten wir fUr die Leistung

Bild 30 Bilanzraum einer Wasserturbine

des realen Prozesses

• • • Wt12rev= 'T/T,is M Wt12rev = 'T/T,is M g(Z2 - Zl) . (6.17)

6.5 Die Kreiselpumpe

Mit Kreiselpumpen fordert man Fliissigkeiten durch Rohrleitungen. Die Druckerhohung i:l.pp = P2 - PI der Kreiselpumpe, Bild 31, dient hauptsachlich zur Uberwindung des Hohenunterschiedes zwischen dem Unter- und Oberbecken und des Druckverlustes i:l.Pv der Rohrleitung. Die Stromungsgeschwindigkeiten in den Leitungen sind haufig sehr gering (c < 5 m/s). Wir vernachlassigen da-

• her die kinetische Energie. Die Druckerhohung i:l.pp(V) und die Druckverluste

• • i:l.pvOI (V) in der Saugleitung und i:l.Pv23 (V) in der Druckleitung sind Funktionen

• • des gefOrderten Volumenstromes V =M / p. Sie seien bekannt. In Abhangigkeit der gewahlten Bilanzgrenze, Bild 31, lassen sich unter den getroffenen Voraus­setzungen und einer stationaren Stromung folgende Gleichungen aufstellen.

Mit WtOI = 0 ergibt sich aus der Gl.(5.10)

PI = Pu - gp(ZI - zo) - PWdissOI· (6.18)

Page 95: Starthilfe Thermodynamik ||

6.5 Die Kreiselpumpe

Die volumenbezogene Reibungsarbeit P WdissOI erfordert im realen ProzeB einen niedrigeren Saugdruck PI der Pumpe im Vergleich zu PIrev. Die Druck­differenz PIrev - PI = b.pvol ist der Druckverlust des Leitungsabschnittes o --t 1. Nach dem ersten Haupt­satz (3.22) fiihrt die Dissipationsarbeit WdissOI = b.pvoI/ P = UI - Uo = C II (TI - To)

zu einer geringfiigigen Erhohung der Tem­peratur der Fliissigkeit. Wir wenden jetzt die Gl.(5.7) auf das Bilanzgebiet 1 --t 2 an, das die Kreiselpumpe zwischen dem Ein- und Austrittsstutzen einschlieBt.

95

Bild 31 Kreiselpumpe im Leitungssystem

Mit qI2 = 0 und ZI = Z2 folgt

(6.19)

Fur die isentrope Zustandsanderung erhalten wir

1 b.pp Wtl2rev = - (P2 - pd = -- .

P P (6.20)

Kennt man den Pumpenwirkungsgrad 7]p = Wt12rev/Wt12, so betragt die tatsachlich aufzuwendende Arbeit der Kreiselpumpe

Wtl2rev b.p P Wtl2 = --- = -- .

7]p P7]p (6.21)

Der Mehraufwand an Arbeit wird in der Kreiselpumpe dissipiert. GemaB Gl.(6.19) erhOht sich die Fliissigkeitstemperatur urn

U2 - UI WdissI2 1 ( 1 ) T2 - TI = = -- = - Wt12 - - (P2 - PI)

Cil Cjl Cil P (6.22)

geringfiigig. Das Bilanzgebiet 2 --t 3 verknupft den Austrittsstutzen der Krei­selpumpe mit dem Hochbehalter. Analog zu den Gln.(6.18) und (6.22) erhiilt man mit Wt23rev = 0 und P3 = Pu

(6.23)

Page 96: Starthilfe Thermodynamik ||

96 6 Technische Anwendungen

Nach den Gln.{6.18) und (6.23) hangt die reversible spezifische technische Arbeit bzw. die DruckerhOhung der Kreiselpumpe

(6.24)

nur von der Spiegeldifferenz Z3 - Zo und der Summe der Rohrleitungsverluste ab, wahrend die TemperaturerhOhung der Fliissigkeit

T3 - To = ~PvOl + Wt12 - Wt12rev + ~Pv23 pC11 cll pC11

(6.25)

betragt. Legt man die Bilanzgrenze schlieBlich urn die gesamte Anlage von o -+ 3, so ergibt sich schlieBlich

~PP ~PvOl ~Pv23 Wt03 = Wt12 = -- = g(Z3 - zo) + -- + Wdiss12 + -- .

p~ p p (6.26)

6.6 Der Warmeiibertrager

Warmeiibertrager werden in den unterschiedlichsten Konstruktionen in fast al­len Bereichen der Technik eingesetzt. Wir wollen uns auf die Rekuperatoren,

bei denen beide Fluide durch eine Wand getrennt sind, beschranken. In diesem Fall iiberqueren zwei Stoffstrome, das Kiihl- und das Heizfluid, die Bi­lanzgrenze, Bild 32. Wir betrachten den stati­onaren Fall unter der Voraussetzung, daB keine Warmeverluste an die Umgebung auftreten. Die A.nderungen der kinetischen und der potentiellen Energie seien vernachlassigbar, ebenso der

h'. I ~' I KL __

M. Bild 32 Warmeiibertrager

Druckverlust. Aus der Energiebilanz Gl.{5.6) folgt mit Wt = 0 und dE/dt = 0

• • • • MH h~+ MK h~- MH h'iI- MK h'i< = O. (6.27)

Legt man die Bilanzgrenze in eine Kammer des Warmeiibertragers, so folgt analog

(6.28)

und bei Vernachlassigung von Phasenumwandlungen

(6.29)

Page 97: Starthilfe Thermodynamik ||

6.6 Der Warmeiibertrager 97

Fiir die weitere Behandlung wollen wir den im Bild 33 dargestellen Mantelrohr­Warmeiibertrager betrachten. Vereinfachend habe das heiBere Fluid eine kon-

• • stante Temperatur {}H. Diese Annahme trifft zu, wenn (M Cp)H » (M Cp)K

ist, eine Kondensation stattfindet oder wenn das Kiihlfluid z.B. in Halbrohren, die auf die Wand aufgeschweiBt sind, urn den Mantel eines Riihrkesselreaktors geleitet wird. Die Warmezufuhr an das Kiihl-fluid erfolgt stetig langs des Weges Sk· l~rL---------' Man kann von einer quasistatischen Zu- -+._._._._._. ______________________________ ---.

standsanderung ausgehen. Ein mit dem Mas- MH I [ senelement pAdsk mitbewegter Beobachter '--------.-,J~ registriert die im Abschnitt 3.4.5 behandel- MK te zeitliche Anderung des Systemzustandes. 1m ortsfesten Bilanzraum stellt sich die Zu­standsanderung als 6rtliche Anderung, z.B. {}K(Sk) dar, wobei die Orts- und die Zeitko­ordinate iiber die Geschwindigkeit c entspre­chend dt = dsk/c verkniipft sind.

8' K

o

a'H=8'~=8H= const

~ il8

Bild 33 Temperaturverteilung

Fiir einen differentiellen Abschnitt dSk des Kontrollgebietes lautet die Energie­bilanz nach Gl.(5.5)

•• • 8 Q =M K dhK = (M cp)Kd{}k (6.30)

und unter Beriicksichtigung des Ansatzes (3.41) fiir den Warmestrom

(6.31)

UR ist hierbei der Umfang des inneren Rohres. Durch Trennung der Variablen

~K k~ d ( ) • Sk 6.32 {}K - {}H (M Cp)K

und nach anschlieBender Integration in den Grenzen 0 ~ Sk ~ Lund {}~ ~ {} K ~ {}'K folgt

Die Temperatur

{}K(Sk) = {}H - ({}H - {}~ )exp (- : UR Sk)

(M Cp)K

(6.33)

(6.34)

Page 98: Starthilfe Thermodynamik ||

98 7 Kreisprozesse und Energiewandlung

des Kiihlfluides nimmt mit SK exponentiell zu. Ersetzt man in Gl.{6.33} den •

Term {M Cp}K mit Hilfe der Gl.{6.29} fUr den gesamten auf der Lange L iiber-•

tragenen Warmestrom Q, so erhalt man fUr diesen

Q• =kA (1)H-1)~}-{1)H-1)'l<} =kA /).1) M ({}H-{}K) M m

In {} (}" H- K

{6.35}

mit

/).1) - /).1)gross - /).1)klein

m - In (l!J.{}grOBB) l!J.{}klein

/).1)m ist die mittlere logarithmische Temperaturdifferenz, die aus der kleinsten und grof3ten Temperaturdifferenz zwischen beiden Fluiden besteht. Gl.{6.35} gestattet die Berechnung der Heizflache AM = U R L bei der Auslegung von Warmeiibertragern.

7 Kreisprozesse und Energiewandlung

7.1 Grundlagen der Kreisprozesse

Jeder Prozef3, der ein System nach Durchlaufen einer Folge von quasistati­schen oder nichtstatischen Zustandsanderungen wieder in den Ausgangszustand iiberfUhrt, ist ein Kreisproze6. Ein Kreisprozef3, bei dem Arbeit verrichtet wird, muf3 mindestens aus einer Verdichtungsphase und einer Entspannungs­phase bestehen, die auf verschiedenen Wegen ablaufen. Kreisprozesse finden in geschlossenen und offenen Systemen statt. Urn sie naher zu beschreiben, wenden wir den ersten Hauptsatz {3.21} fUr ein geschlossenes System

f ~q + f ~w = f du = 0 {7.1}

und die Energiebilanz {5.7} eines offenen Systems

f ~q + f ~Wt = f dh + ~ f dc2 + 9 f dz = 0 {7.2}

auf einen geschlossenen Prozef3 an. Die rechten Seiten der beiden Gln.{7.1} und {7.2} ergeben Null, da Kreisintegrale iiber Zustandsgrof3en stets verschwinden. Es gilt daher der

Page 99: Starthilfe Thermodynamik ||

7.1 Grundlagen der Kreisprozesse 99

Satz 7.1: Die bei einem Kreisprozep in einem geschlossenen oder ofJenen System verrichtete spezijische KreisprozeBarbeit

(7.3)

ist gleich der negativen DifJerenz der zu- und abgefuhrten Warme. Fur rever­sible Prozesse folgt aus den Gin. (3.17) und (5.11)

W rev = f 6wrev = - f pdv = f 6wtrev = f vdp = -(qzu - qab)rev. (7.4)

Wahrend w bzw. W rev ~ 0 sein kann, sind qzu, qab ~ o. Kreisprozesse ftihrt man mit dem Ziel der Energieumwandlung durch. Wird mehr Warme zu- als abgeftihrt (qzu > qab), so gibt der KreisprozeB Arbeit ab (w < 0). Man spricht in diesem Fall von einer Warmekraftmaschine.

GemaB der schematischen Darstellung im T, s-Diagramm, Bild 34, ist der Kreispro-zeB einer Warmekraftmaschine ein RechtsprozeB. 1st demgegenuber qab > qzu, so muB dem ProzeB Arbeit zugefuhrt werden, die benotigt wird, urn Warme von einem System niederer Temperatur in ein System hoherer Temperatur zu transportieren. In diesem Fall handelt es sich urn einen linkslaufigen ProzeB.

a

52 51 5

Bild 34 Kreisprozefi im T, s-Diagramm

Linksprozesse finden in Kaltemaschinen und Warmepumpen statt. Fur die Bewertung der rechtslaufigen Prozesse benutzt man den thermischen Wir­kungsgrad 'f/th und fur die linkslaufigen Prozesse die Leistungsziffer c. Die Kennziffern

qab cwp=­

W (7.5)

sind die Verhaltnisse von Nutzen und Aufwand. CKM ist die Leistungsziffer der Kaltemaschine und cwp die der Warmepumpe. Fur eine Kaltemaschine z.B. stellt die dem Kuhlfach entzogene und dem Kaltemittel zugeftihrte Warme qzu die genutzte Energie dar. Die KreisprozeBarbeit ist dagegen die aufzuwendende Energie.

Page 100: Starthilfe Thermodynamik ||

100 7 Kreisprozesse und Energiewandlung

7.2 Moglichkeiten der Energieumwandlung

Der zweite Hauptsatz schrankt die m6glichen Energieumwandlungen ein. Wahrend Arbeit vollstandig in innere Energie und Warme umwandelbar ist, kann Warme mit einem KreisprozeB nicht vollstandig in Arbeit umgewan­delt werden. Zur naheren Erlauterung betrachten wir eine Maschine M, in der das Arbeitsmittel einen KreisprozeB durchlauft. AuBer der Maschine sind zwei Warmereservoire unterschiedlicher Temperatur erforderlich, Bild 35. Ihre Warmekapazitaten seien sehr groB, so daB die Temperaturen konstant bleiben. Aus dem oberen Warmereservoir mit der Temperatur To flieBt der Maschine die Warme Qzv. zu. An das untere Warmereservoir mit I. - - - - - - -I

der Temperatur Tu < To gibt die Maschine einen 1 Ro 1 Teil der aufgenommenen Warme Qab wieder abo 1 1

1 1 Nur auf diese Weise laBt sich ein KreisprozeB rea- 1 1 W lisieren. Wir wollen zeigen, daB die Existenz des 1 1 •

zweiten Warmereservoirs notwendig ist. 1 1 1 1

Angenommen, das untere Warmereservoir ware 1 1

nicht vorhanden, dann ware IWI = Qzu. Das 1 Tu 1 Warmereservoir mit der Temperatur To L - - - - - - _I

Bild 35 Adiabates Gesamtsystem einer Warmekraftmaschine

bildet mit der Maschine zusammen ein adiabates Gesamtsystem, dessen Entro­pieanderung fUr eine Arbeitsperiode (AP)

(~SgesAPtd = ~SM + ~So = f dSM - ~u = - ~ou < 0 (7.6)

ist. Fur das System Maschine, in dem das Arbeitsmittel einen KreisprozeB durchlaufen hat, ist die Entropieanderung Null. Da Gl.(7.6) gegen den zweiten Hauptsatz verst6Bt, ist ein ProzeB, der nur durch Abkuhlung eines Warmere­servoirs periodisch Arbeit liefert, nicht m6glich. Wegen der Bedeutung, die eine solche Maschine haben wurde, bezeichnet man sie als perpetuum mobile 2. Art! Es verst6Bt nicht gegen den ersten, wohl aber gegen den zweiten Haupt­satz. Damit ist stets ein zweites Warmereservoir mit niedrigerer Temperatur Tu < To erforderlich, dessen Entropie bei der Warmeaufnahme zunimmt. Nach dem ersten Hauptsatz (3.20) betragt dann die von der Maschine abgege­bene Arbeit

(7.7)

Gleichzeitig fordert der zweite Hauptsatz (3.69) fUr das adiabate Gesamtsystem

(~SgesAP)ad = ~SM + ~So + ~Su = - ~u + ~:b 20. (7.8)

Page 101: Starthilfe Thermodynamik ||

7.3 Der Carnotsche KreisprozeB 101

Wir ersetzen nun in der Ungl.{7.8) Qab durch Gl.{7.7) und stellen die so erhaltene Gleichung nach der KreisprozeBarbeit urn:

IWI ~ Qzu(l- ~:). Fur den thermischen Wirkungsgrad TJth erhalten wir die Ungleichung

IWI Tu TJth = - ~ 1 - - < 1 . (7.9)

Qzu To

Satz 7.2: Bei Wiirmekraftmaschinen mufJ gemiifJ des zweiten Hauptsatzes stets ein Teil der zugefuhrten Wiirme bei niedrigerer Temperatur wieder ab­gefuhrt werden. Daraus folgt fur den thermischen Wirkungsgrad TJth < 1. Der maximal in Arbeit umwandelbare Anteil der Wiirme hiingt nicht vom Arbeits­stoff abo Er ist nur eine Funktion der minimalen und maximalen ProzefJtem­peratur

I I ( T min) (Tu ) W max = 1 - -T, Q zu = 1 - -T. Q zu . max 0

(7.1O)

1st die minimale ProzeBtemperatur durch die Umgebungstemperatur festgelegt, so kann der Wirkungsgrad nur durch Anheben der ProzeBtemperatur T max ge­steigert werden. Aus diesem Grunde ist bei Warmekraftmaschinen die Warme­zufuhr bei moglichst hoher Temperatur zu realisieren. Wird bei einer Energieubertragung das Temperaturniveau abgesenkt, dann ist damit ein Verlust an Arbeitsfahigkeit verbunden. Ein Beispiel dafur ist der Dampferzeuger. Wahrend die Rauchgastemperatur z.B. {)R = {)o = 1200° C betragt, laBt man aus Werkstoffgrunden nur eine Dampftemperatur von {)D = {)o - LlTwue = 550°C zu. Der thermische Wirkungsgrad TJth,D des Dampf­prozesses verschlechtert sich dadurch. Setzen wir LlTwue = {)R - {)D, dann be­tragt der Verlust an gewinnbarer Arbeit durch die bei der Warmeubertragung auftretende Temperaturabsenkung

Ll WVerl = (TJth,R - TJth,D) Qzu = (To _ ~Twue - ~:) Qzu > O. (7.11)

1m angegebenen Beispiel betragt ILlWverti mit Tu = 300 K bereits 16.1 % von Qzu.

7.3 Der Carnotsche Kreisproze6

Die wesentlichen Zusammenhange der Kreisprozesse wollen wir am Beispiel des Carnot-Prozesses naher erlautern. Er ist in der Thermodynamik als theoreti­scher VergleichsprozeB von grundsatzlicher Bedeutung.

Page 102: Starthilfe Thermodynamik ||

102 7 Kreisprozesse und Energiewandlung

7.3.1 Die Warmekraftmaschine

Eine Carnot-Maschine kann mit dem System 'Zylinder-Kolben' (ohne Ein- und AuslaBventil) beschrieben werden. 1m Zylinder befindet sich das Arbeitsgas, das dort stiindig verbleibt und in der Ro Modellvorstellung abwechselnd jeweils L1.J :~:a:~~e~o ~!~m~:s~~vo~O~::k;e:: _~r __ -._-... -.. -... -._-.. -... -.. -... -.. '.!=-.. bracht wird, Bild 36. Der Carnotsche IT:l i,.·OT UTi KreisprozeB besteht aus 4 Teilprozes- Ru sen, Bilder 36 und 37. Von 1 -+ 2 er- : 1 folgt eine isotherme Entspannung, bei P der die Wiirme Qzu zugefiihrt wird. Das Wiirmereservoir Ro hat in dieser Zeitspanne Kontakt mit dem Zylinder. Der isothermen Entspannung folgt ei- Tu ne isentrope Entspannung von 2 -+ 3 V

Bild 36 Carnotscher KreisprozeB

auf den Druck P3 < P2 und auf die Temperatur Tu < To. In 3 hat der Kolben UT erreicht. Es schlieBt sich nun die isotherme Verdichtung von 3 -+ 4 an. Dabei wird auf dem Temperaturniveau Tu die Wiirme Qab dem Arbeitsgas entzogen. Zu die­sem Zweck ist das Wiirmereservoir Ru mit dem Zylinder in Kontakt zu bringen. Von 4 -+ 1 wird das Arbeitsgas im Zylinder isen­trop verdichtet, bis in 1 wieder der Anfangs­zustand erreicht ist. Der Carnot-ProzeB setzt sich also aus zwei Isothermen und zwei Isen­tropen zusammen. Nach vollstiindiger

T

T u ...... -4.*i. -+++~ 3

Bild 37 Carnot-ProzeB im T, s-Diagramm

Berechnung der thermischen ZustandsgroBen Pi, Vi, Ti in den ProzeBpunkten i = 1,2,3,4 sind die Wiirmen, die KreisprozeBarbeit und der thermische Wir­kungsgrad mit Hilfe der Gleichungen in Tabelle 5.1 berechenbar:

/2 ~

Qzu = Q12 = 1 TodS = To(S2 - Sd = MRToln VI = -WV12 ,

t ~ Qab = IQ341 = - 13 TudS = -Tu(S4 - S3) = -MRTuln V3 = W V34 ,

(7.12)

W = W V12 + W V23 + W V34 + W V4I = -(Qzu - Qab). (7.13)

Page 103: Starthilfe Thermodynamik ||

7.3 Der Carnotsche KreisprozeB 103

1

Es ist WV41 = - WV23 mit ~ = tf = (¥U) K-l , und man erhalt

W = -(To - Tu)(S2 - Sl) und (7.14)

IWI Qab Tul~SI Tu 'f/th = Qzu = 1 - Qzu = 1 - Tol~SI = 1 - To < 1. (7.15)

Vergleicht man Gl.{7.15) mit Gl.{7.10), so folgt der Satz

Satz 7.3: Von allen Kreisprozessen, die zwischen den Temperaturen To und Tu realisierbar sind, besitzt der Carnot-ProzefJ den maximalen Wirkungsgrad

(7.16) ( ) IWmaxl Tu 'f/th,C = 'f/th,max To, Tu = Q = 1 - -T. .

zu 0

Der thermische Wirkungsgrad 'f/th,max gibt die durch den zweiten Hauptsatz bedingte Grenze der Umwandelbarkeit von Wiirme in Arbeit an.

In Abhangigkeit von den bei einem rea­len ProzeB auftretenden minimal en und ma­ximalen Temperaturen kann mit 'f/th,max eine ProzeBbewertung vorgenommen wer­den. Bild 38 zeigt den bei reversibler Pro­zeBfiihrung theoretisch als Arbeit gewinnba­ren Anteil der Wiirme. Bei realen Prozessen verschlechtert sich dieser Anteil noch einmal infolge der durch die Irreversibilitiiten verur­sachten Energiedissipation.

0.8 .......... --------.. ----------------------

0.4

o 300 600 1000 To 1500

Bild 38 Carnot-Wirkungsgrad

7.3.2 Kaltemaschine und Warmepumpe

Kiiltemaschinen und Wiirmepumpen liegen Linksprozesse zugrunde. Sie unterscheiden sich durch die technische Zielstel-

~~:;;,d~:~md~~~e~e~KJn~!:~::~~~~~~H~e~~ TH ····················t m'I:/4

peraturbereich ihres Einsatzes, Bild 39. Die T~ ... '.r .... f :.~!,... ~ . Berechnung erfolgt analog dem RechtsprozeB. KM 2 3 Dem ProzeB muB jetzt Arbeit zugefiihrt wer- 0 den. Liings der Isothermen 2 ~ 3, Bild 39, wird TK ·-2- .......... -3-······················· die Wiirme Qzu bei der niedrigeren Temperatur s •

Bild 39 Carnotscher LinksprozeB

Page 104: Starthilfe Thermodynamik ||

104 7 Kreisprozesse und Energiewandlung

Tu zugefiihrt, und Hings der Isothermen 4 -+ 1 wird die Warme Qab = Qzu + W bei der hOheren Temperatur To abgefiihrt. Die Leistungsziffern dieser Vorgange

(7.17)

und

CWP,G = c;: = Qab~bQzu = To: Tu = cWP,max(Tu, To) (7.18)

stellen fUr aIle zwischen To und Tu realisierbaren Kreisprozesse theoretische Grenzwerte dar. Diese sind nur eine Funktion der minimalen und maximalen ProzeBtemperatur. Die theoretischen Grenzwerte der Leistungsziffern sind im Bild 40 in Abhangigkeit der ProzeBtemperaturen dargestellt. 10,--------------n

8 EJ(M

6

4

2

10 ,-,----------...,

8

&.w 6

2

o 0

• 0.8 ~ &""0.6

0.4

0.2

o ·100 -80 -60 -40°C -20 0 40 60°C 80 100 120

3u 30

40 600C 80 100 120 3H

Bild 40 Carnot-Leistungsziffer der Kaltemaschine und Wiirmepumpe

Aus den Verlaufen wird deutlich, daB bei der Auslegung von Kiihlprozessen die Kaltemitteltemperatur nur so niedrig wie unbedingt notwendig gewahlt wer­den sollte. Ebenso sind fUr einen effektiven Einsatz von Warmepumpen Nie­dertemperaturheizsysteme Voraussetzung. Wahrend fiir reversible Prozesse mit LlTwue = 0 die unteren und oberen ProzeBtemperaturen identisch mit TK und Tum bzw. Tum und TH sind, ist bei realen Prozessen zur Erzielung einer endli­chen Warmeiibertragerfiache stets eine Mindestdifferenz LlTwue zu beriicksich­tigen (vergl. Abschnitt 3.3). Vereinfachend soIl diese hier unabhangig von den Fluiden fiir die Warmezu- und -abfuhr gleichgroB angenommen werden. Bei­spielsweise ist die Leistungsziffer cWP,G der Warmepumpe in diesem Fall

* _ TH + LlTwue cWP,G - ""'(:----------.,...)---(-;----------~) .

TH + LlTwue - Tum - LlTwue (7.19)

Die relative Verringerung der Leistungsziffer cWP,G/cwP,G infolge einer Tempe­raturdifferenz LlTwue beim Warmeiibergang in den Warmeiibertragern ist im

Page 105: Starthilfe Thermodynamik ||

7.3 Der Carnotsche KreisprozeB 105

Bild 40 rechts dargestellt. Wird in beiden Prozessen der gleiche Heizwarmestrom

Qab vorausgesetzt, so gilt cwp,c/cwp,c = W/W~T. Die mit der Irreversibilitat des Warmetransportes verbundene Dissipation erfordert damit einen nicht un­erheblichen Mehraufwand an Arbeit.

Beispiel 15: Welche minimale theoretische Leistung ist zum Antrieb einer Kaltemaschine notwendig, die einem Kiihlraum stiindlich 8000kJ bei {)K = -18°C entzieht und die Warme bei der Umgebungstemperatur {)Um = 25°C abgibt? Wie andert sich dieser Wert, wenn flir die Warmezu- bzw. -abfuhr jeweils eine Temperatur­differenz von b,.{) = 5 K zu beriicksichtigen ist? Losung: Mittels der maximalen Leistungsziffer, Gl.(7.17),

TK 255 cKM,max = Tum _ TK = 298 _ 255 = 5.93

ergibt sich die minimale Leistung der Kaltemaschine zu

• • Qzu 8000 kW

W mm = CKM C = 3600.5.93 = 0.375 . ,

Auf Grund der Temperaturdifferenz tl.iJ betragt die Leistungsziffer

TK - tl.iJ 250 CKM,C = Tum _ TK + 2tl.iJ = 53 = 4.72

und die Leistung der Kaltemaschine W = 36gg?J72 = 0.471 kW. •

Unter der Annahme idealisierter Bedingungen k6nnen eine Reihe praktisch wichtiger Energieumwandlungsprozesse durch einfache Kreisprozesse beschrie­ben werden. Hierzu zahlen u.a. der Otto-ProzeB (zwei Isentropen, zwei Iso­choren), der Diesel-ProzeB (zwei Isentropen, eine Isobare, eine Isochore) und der Joule-Proze6 (zwei Isentropen, zwei Isobaren) als VergleichsprozeB der geschlossenen und offen en Gasturbinenanlage. Ihre Berechnung entspricht prin­zipiell der hier vorgestellten Vorgehensweise. Beziiglich einer detaillierten Be­handlung sei auf die weiterflihrende Literatur [Ba96, E193, St92] verwiesen.

Page 106: Starthilfe Thermodynamik ||

Literatur

[Au94] Autorenkollektiv : VDI- Wiirmeatlas. VDI-Verlag 1994.

[Ba96] Baehr, E.D.: Thermodynamik. Berlin: Springer-Verlag 1996.

[BK88] Bosnjakovice, F.; Knoche, KF.: Technische Thermodynamik. Leipzig: Dt. Verlag fiir Grundstoffindustrie 1988.

[Di95] Dittmann, A.; Fischer, S.; Huhn, J.; Klinger, J.: Repetitorium der Tech­nischen Thermodynamik. Stuttgart: Teubner-Verlag 1995.

[Do94] Doering, E.; Schedwill, H.: Grundlagen der Technischen Thermodyna­mik. Stuttgart: Teubner-Verlag 1994.

[EI93] Elsner, N.: Grundlagen der Technischen Thermodynamik. Berlin: Akademie-Verlag 1993.

[Ib97] Iben, H.K: Stromungslehre in Fragen und Aufgaben. Leipzig: Teubner­Verlag 1997.

[Ri96] Rist, D.: Dynamik realer Gase. Berlin: Springer-Verlag 1996.

[SG89] Schmidt, E.; Grigull, U.: Zustandsgropen von Wasser und Wasserdampf in SI-Einheiten. Berlin: Springer-Verlag 1989.

[St92] Stephan, K; Mayinger, F.: Thermodynamik. Bd. 1. Berlin: Springer­Verlag 1992.

[St98] Stolz, W.: Starthilfe Physik. Leipzig: Teubner-Verlag 1998.

[Ve98] Vetters, K: Formeln und Fakten. Stuttgart Leipzig: Teubner-Verlag 1998.

[WM94] Wenzel, H.; Meinhold, P.: Gewohnliche Differentialgleichungen. Leip­zig: Teubner-Verlag 1994.

[Ze96] Zeidler, E.: TEUBNER-TASCHENBUCH der Mathematik. Leipzig: Teubner-Verlag 1996.

Page 107: Starthilfe Thermodynamik ||

Sachregister

Arbeit 41 -, iiuBere 43 -, elektrische 46 -, mechanische 43 -, technische 50, 82 Avogadro-Konstante 30

Bilanzgebiet 12, 44

Dampf -, iiberhitzter 21 -, gesiittigter 21 Dampfdruckkurve 21 Desublimation 22 diatherm 41, 48 Differential -, unvollstiindiges 61 -, vollstiindiges 41, 61 Dissipation 46, 64, 69 Dissipationsarbeit 46, 47, 59 Drosselvorgang 89 Druck 13

elektrische Arbeit 46 elektrische Leistung 42 Energie -, innere 45 -, kinetische 14 -, potentielle 43 Energieerhaltungsprinzip 41 Enthalpie 23, 25, 26, 74 Entropie 61 Entropiebilanz 64 Entropieproduktion 64 Entropiestrom 64 Erstarren 20

Erstarrungslinie 20

Fliissigkeit -, ideale 36 -, inkompressible 36 -, schwach kompressible 37 Fundamentalgleichung 73

Gas -, ideales 24 -, perfektes 33 -, reales 34 Gaskonstante -, spezielle 30 -, universelle 31 Gesamtsystem 13 Gesetz von - Avogadro 30 - Dalton 39 G leichgewicht -, mechanisches 13 -, thermodynamisches 14 Gleichgewichtszustand 13 GroBe -, molare 16 -, spezifische 16

Hauptsatz -, erster 48 -, nullter 14 -, zweiter 58, 64 HeiBdampf 21

ideales Gas 30 Integrabilitiitsbedingung 61 integrierender Faktor 61 Isentrope 68

Page 108: Starthilfe Thermodynamik ||

108

Isobare 51 Isochore 50 Isotherme 68

Joule-Thomson-Effekt 89

Kalorimeter 54 Kondensieren 20 Kontinuitatssatz 83 Kontinuum 15 Kontrollraum 12 Kreisprozef3 18 - Carnot 101 kritischer Punkt 22

Leistungsziffer 99 Loschmidt-Konstante 30

Maxwell-Relationen 29, 74 Molmasse 30 Molmenge 30

Normzustand 17

perpetuum mobile 2. Art 100 Phase 13 Phasenregel 22 Poly trope 69 Prozef3 18 -, irreversibler 18 -, nichtstatischer 19 -, quasistatischer 19 -, reversibler 18 Prozef3grof3en 18

Realgasfaktor 34 Reibungsarbeit 46

Sattdampf 21 Schmelzdruckkurve 21 Schmelzen 20 Schmelzlinie 20 Siedelinie 20

Sachregister

Sublimation 22 Sublimationsdruckkurve 21 System -, abgeschlossenes 12 -, adiabates 12, 45 -, geschlossenes 12 -, isoliertes 12 -, offenes 12, 82 Systemarbeit 43, 46 Systemgrenze 12

Taulinie 21 Teilchenzahl 30 Temperatur 14 thermodynamisches System 12 Tripelpunkt 21

Umgebung, 12

van der Waals-Gleichung 34 Verdampfen 20 Verschiebearbeit 84 Volumenanderungsarbeit 42

Warme 41, 47 Warmestrom 42 Wirkungsgrad 91, 92, 94, 99

Zustandsanderung -, isentrope 67, 68, 77 -, poly trope 78, ~O Zustandsgleichung -, energetische 23, 25, 66 -, thermische 23, 30 Z ustandsgrof3e -, auf3ere 15 -, energetische 16 -, extensive 16 -, intensive 16 -, kalorische 16 -, thermische 16


Recommended