+ All Categories
Home > Documents > Erneuerbare Energien im Verkehr 2050 - LBST · Erneuerbare Energien im Verkehr 2050 Ergebnisse und...

Erneuerbare Energien im Verkehr 2050 - LBST · Erneuerbare Energien im Verkehr 2050 Ergebnisse und...

Date post: 18-Sep-2018
Category:
Upload: leminh
View: 218 times
Download: 0 times
Share this document with a friend
31
LBST.de 23 November 2016 Ludwig-Bölkow-Systemtechnik GmbH VDI-Fachtagung «Innovative Antriebe» ∙ Dresden ∙ 23. November 2016 Erneuerbare Energien im Verkehr 2050 Ergebnisse und Gedankenfutter aus fünf explorativen 100%-Szenarien für die Forschungsvereinigung Verbrennungskraftmaschinen e.V. (FVV) Patrick R. Schmidt ∙ Werner Weindorf ∙ Werner Zittel LBST ∙ Ludwig-Bölkow-Systemtechnik GmbH ∙ Munich ∙ Germany 2016-11-23 ∙ WEB
Transcript

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

VDI-Fachtagung laquoInnovative Antrieberaquo ∙ Dresden ∙ 23 November 2016

Erneuerbare Energien im Verkehr 2050 Ergebnisse und Gedankenfutter aus fuumlnf explorativen 100-Szenarien fuumlr die Forschungsvereinigung Verbrennungskraftmaschinen eV (FVV)

Patrick R Schmidt ∙ Werner Weindorf ∙ Werner Zittel

LBST ∙ Ludwig-Boumllkow-Systemtechnik GmbH ∙ Munich ∙ Germany

2016-11-23 ∙ WEB

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

LBST ∙ Ludwig-Boumllkow-Systemtechnik GmbH

2

Independent expert for sustainable energy and mobility for over 30 years

Bridging technology markets and policy

Renewable energies fuels infrastructure

Technology-based strategy consulting System and technology studies Sustainability assessment

Global and long term perspective

Rigorous system approach ndash thinking outside the box

Serving international clients in industry finance politics and NGOs

Reference projects

FVV Renewables in Transport 2050

UBA Power-to-Liquids for Aviation

BMVI German Mobility amp Fuels Strategy (MKS)

JRCEUCARCONCAWE (JEC) Well-to-Tank Analyses httpwwwlbstderessourcesdocs2016FVV_H1086_Renewables-in-Transport-2050-Kraftstoffstudie_IIpdf

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

3

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

FVV study motivation

Greenhouse gas reduction targets of 80-951990 by 2050 will require substantial contributions from the transport sector

Renewable electricity to become the primary energy source in future

100 renewable electricity in transport by 2050 ndash pie in the sky

2 archetype scenarios + 1 synthetic mix scenario

What are the consequences in terms of energy and costs

What are determinants for future use of internal combustion engines

4

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

German laquoKlimaschutzplan 2050raquo on the occasion of COP22 in Marrakesh

5

Quelle Klimaschutzplan 2050 der Bundesregierung 11112016 S 2627

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

6

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

2010 2020 2030 2040 2050

billion Pkm Aviation FootBike Public transportMot individual transport Renewbility IIVP 2030MKS 2050 ShelleMobil 2050 Grenzenlos Energiekonzept ZieleMobil 2050 Regional Verbaumlndekonzept

LBST

201

5-07

-09

Two distinct transportation demand scenarios | DE | HIGH LOW

Scenario developments 2010ndash2050 (figures rounded)

HIGH transport demand scenario [BMVI VP 2030MKS 2050]

ndash Passenger +30

ndash Freight +60

LOW transport demand scenario [eMobil 2050 bdquoRegionalldquo]

ndash Passenger -25

ndash Freight +20

7 0

200

400

600

800

1000

2010 2020 2030 2040 2050

billion tkm Aviation Ship (waterway)Train Road (other)Road (trailer truck) VP 2030LBST 2050Energiekonzept Ziel eMobil 2050 GrenzenlosVerbaumlndekonzept eMobil 2050 Regional

LBST

201

5-07

-09

BMVI ∙ German Federal Transport Ministry MKS ∙ German Mobility amp Fuels Strategy

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Target scenario ndash gradual shift from today to 100 renewable PtX by 2050

Gasolinekerosenediesel

Methanol

Methane

Hydrogen

0

10

20

30

40

50

60

70

80

90

100

2015 2020 2030 2040 2050

Shar

e r

en

wab

leGasolinekerosenedieselfrom crude oil

via PtL from renewableelectricity

Renewable share in the fuels (per MJ fuel)

8 PtL ∙ Power-to-Liquids PtX ∙ Power-to-Anything

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Definition of three distinct fuelpowertrain scenarios

PTL | Conservative scenario based on well established fuelspowertrainsinfrastructures incl ICE mild hybrids with power-to-liquids dominating all transportation modes high fuel demand

FVV | A mix of currently discussed options comprising ambitious ICE development progress incl ICE hybrids REEV BEV FCEV medium fuel demand

eMob | Derived from the study ldquoeMobil 2050rdquo [Oumlko-Institut 2015] with a dominance of electrified drivetrains low fuel demand

9

BEV ∙ Battery-electric vehicle eMob ∙ Electric mobility FCEV ∙ Fuel cell-electric vehicle FVV ∙ Research association PHEV ∙ Plug-in hybrid vehicle PTL ∙ Power-to-liquids REEV ∙ Range-extender vehicle

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Fuelpowertrain scenario | New car registrations

10

PTL CAR

[new-reg]

ICE Gasol Diesel

ICE Methane

Hybrid Gasol Diesel

Hybrid Methane

REEV Gasol Diesel

REEV Methane

BEV FCEV

2010 100 0 0 0 0 0 0 0 2020 80 0 20 0 0 0 0 0 2030 40 0 60 0 0 0 0 0 2040 10 0 90 0 0 0 0 0 2050 0 0 100 0 0 0 0 0

FVV CAR

[new-reg]

ICE Gasol Diesel

ICE Methane

Hybrid Gasol Diesel

Hybrid Methane

REEV Gasol Diesel

REEV Methane

BEV FCEV

2010 100 0 0 0 0 0 0 0

2020 36 5 45 2 6 0 4 1

2030 0 0 55 5 25 0 10 5

2040 0 0 37 2 45 0 16 9

2050 0 0 0 0 70 0 20 10

eMob CAR

[new-reg]

ICE Gasol Diesel

ICE Methane

Hybrid Gasol Diesel

Hybrid Methane

REEV Gasol Diesel

REEV Methane

BEV FCEV

2010 100 0 0 0 0 0 0 0 2020 86 5 3 0 3 0 3 0 2030 68 5 6 0 9 0 12 0 2040 0 0 10 0 17 0 72 0 2050 0 0 5 0 12 0 82 0

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

11

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Greenhouse gas emissions (example FVV scenario)

12

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Non-CO2-GHG vehicle

Methanol

H2

Electricity mix (train)

Electricity mix (04 kV)

CH4

DieselKerosene

Gasoline

Past Future

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Non-CO2-GHG vehicle

Methanol

H2

Electricity mix (train)

Electricity mix (04 kV)

CH4

DieselKerosene

Gasoline

Past Future

Greenhouse gas emissions | DE | All transport | laquoFVVraquo

13

by fuel

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future by mode

FVV + HIGH FVV + LOW

Climate impacts from high-altitude emissions (aviation) not included

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Final fuel demand electricity demand

14

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Fuel demand (TWha) | DE | All transport | laquoFVVraquo

Growth in HIGH transport demand overcompensates efficiency improvements

Relative importance of trucks and aviation in fuel demand increases

Thereof notably international aviation 15

0

100

200

300

400

500

600

700

800

900

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

Fin

al e

ne

rgy

use

(TW

hy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

FVV + HIGH FVV + LOW

0

100

200

300

400

500

600

700

800

900

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

Fin

al e

ne

rgy

use

(TW

hy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Total electricity demand in 2050 may be a factor 2 to 4 of todayrsquos electricity demand

All scenarios would likely require renewable energy imports

0

500

1000

1500

2000

2500

2015 2020 2025 2030 2035 2040 2045 2050

TWha

PTL + HIGH

PTL + LOW

FVV + HIGH

FVV + LOW

eMob + LOW

LBST

201

5-1

1-27

non-transport PtX (heat chemicals)

non-transport efficiency targets

521 TWhe net electricity consumption 2014

Electricity demand (TWhea) | DE | Today + transportation

16

1000 TWhea technical renewable electricity potential (this study)

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

hellip and cumulated investments until 2050

17

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Methodology

The cumulated investments consist of the following elements

ndash Renewable power plants

ndash PtX production plants

ndash Infrastructure for fuel transport amp distribution

Investments for end-of-life replacements are included in the cost model with a PtX plant lifetime of 25 years

Learning curves for electrolysers assumed ie the 1st PtX production plant is more expensive than the nth one

BEV home-charging assumed

Vehicle costs not included

18

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Germany

19 For comparison 2014 in Germany

Gross domestic product (GDP) = 2900 billion euroa

gt70 GW renewable power (38 GW wind onshore 3 GW wind offshore 39 GW PV)

0

200

400

600

800

1000

1200

1400

1600

PTL+HIGH PTL+LOW FVV+HIGH FVV+LOW eMob+LOW

billion euro

6200 H2 refuelling stations

4600 CH4 refueling stations

PtX production plants

360-900 GW RES power plants

PTL FVV eMob

LBST

201

5-12

-23

BEV Home charging

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

System integration of fluctating renewable power generation

20

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Efficiency vs renewables integration (Scaling indicativefor educational purpose)

Trade-off between efficiency and renewable power integration (ldquoSystemdienlichkeitrdquo)

Robust option Hydrogen

Sole option providing zero well-to-wheel emissions AND long-term energy storage Hydrogen

BEV battery-electric vehicle EV electric vehicle DSM demand-side management PTG power-to-gas PTL power-to-liquids

Electric powertrain Zero (local) emissions

demand flexible up to few hours

demand flexibility over hoursday(s) Energy storage over daysweeksmonths

demand flexibility add measures

LBST

201

5-12

-18

EV Overhead

line

BEV Charging

PTG Hydrogen

PTG Methane

PTL Gasoline Diesel

Efficiency Propulsion+Upstream

Storage density amp Demand flexibility

21

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

22

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Conclusions from the FVV Future Fuel study in a nutshell

Transportation demand development (pkm tkm) is strongest driver for fuelelectricity demand

PtX fuel costs could half between 2015 and 2050 PtL imports ~20 lower in cost Further cost reductions are subject to location-specific business cases

PtX costs are dominated by electricity costs which strongly depends on the fuel choice (H2 CH4 PTL) and associated plant efficiencies

Fuel distribution infrastructure costs are negligible compared to the upstream investments required for any of the scenarios analysed

Cumulated investments for Energiewende (energy transition) in the transportation sector seem manageable for any of the scenarios analysed

All scenarios analysed will probably exceed technicalacceptable renewable electricity potentials in Germany Import of PtL (if any) is likely for cost reasons

Transport must get more electric with regard to the fuel and the propulsion system

23 pkm ∙ person kilometre tkm ∙ tonne kilometre PtX ∙ Power-to-anything PtL ∙ Power-to-liquids

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Literature

P Schmidt W Zittel W Weindorf T Raksha (LBST)

Renewables in Transport 2050 ndash Empowering a sustainable mobility future with zero emission fuels from renewable electricity ndash Europe and Germany

Research Association for Combustion Engines eV (ed)

FVV-Report 1086 2016

Download

httpwwwfvv-netdeendownloadrenewables-in-transport-2050renewables-in-transport-2050html

24

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

LBST Experts

Patrick Schmidt (Dipl-Ing)

T +49 (0)89 608110-36 E PatrickSchmidtLBSTde

Dr Werner Zittel

Werner Weindorf (Dipl-Ing)

Tetyana Raksha (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH

Daimlerstr 15 85521 MunichOttobrunn Germany httpwwwlbstde

25

Acknowledgement

This study was financed by the FVV and supported by members of the FVV Working Group laquoFuture Fuelsraquo

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

ANNEX

26

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical renewable power generation potentials

27

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany and EU-28

Germany and the EU have (very) high technical renewable electricity potentials

ndash DE ~1000 TWha potential vs ~500 TWh net electricity consumption

ndash EU ~11000 TWha potential vs ~2800 TWh net electricity consumption

Only ~11 (DE) and ~6 (EU28) if this potentials are currently used for renewable power production

The limits to renewable power growth seem to be more of an acceptance issue than costs

[ISE 2015] states PV electricity production costs of 2-4 euroctkWh in Southern and Central Europe by 2050

Renewable power potentials assessed for solarthermal power plants could also be exploited with photovoltaics

28

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany (bars can be stacked)

29

0

500

1000

1500

2000

2500

3000

Windonshore Windoffshore PV Hydro Geothermal

Tech

nic

al p

ote

nti

al (

TWh

yr)

Net electricity consumption 2014 521 TWhyr

Lud

wig

-Bouml

lko

w-S

yste

mte

chn

ik G

mb

H (

LBST

) 2

01

5-1

0-0

5

Maximum

Minimum

Bandwidth for technical renewableenergy potentials

Assumption in this study

1000 TWhyr

Potential already exploited

Data [BMU 2010] [BMU 2012] [BWE 2013] [ISE 2015] [IWES_PV 2012] [IWES 2012] [Quaschning 2013] [TAB 2003] [UBA 2013] 2014 data [AGEB 2015] provisional as per 082015 2014 data [BDEW 2015] provisional as per 082015

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

CO2 avoidance costs

30

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

1800

2000G

aso

line

kero

sen

ed

iese

l

EE-P

tL m

eth

ano

l ro

ute

EE-P

tL F

T ro

ute

EE-P

tL S

OEC

met

han

ol r

ou

te

EE-P

tL S

OEC

-FT

rou

te

EE-C

H4

(C

NG

)

EE-C

H4

(LN

G)

EE-C

H4

(C

NG

) SO

EC

EE-C

H4

(LN

G)

SOEC

EE-C

GH

2 (

on

site

)

Elec

tric

ity

for

BEV

Liquid fuelsreference

Liquid fuels (PtL) Gaseous fuels (PtG) Electricity

FOSSIL RENEWABLE

GH

G a

void

ance

co

sts

(eurot

CO

2e

qu

ival

en

t)

2015 2020 2030 2040 2050

LBST

20

15

-12

-22

Benchmarks Fuels from

crude oil(0 eurot CO2)

-58-57

-67 -67

-58

-61

-62

-65-67

-23

CO2 avoidance costs well-to-tank [eurot CO2-eq] for PtX in DE

31

Least-cost short-term Electricity

Least-cost long-term Electricity and CGH2

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

LBST ∙ Ludwig-Boumllkow-Systemtechnik GmbH

2

Independent expert for sustainable energy and mobility for over 30 years

Bridging technology markets and policy

Renewable energies fuels infrastructure

Technology-based strategy consulting System and technology studies Sustainability assessment

Global and long term perspective

Rigorous system approach ndash thinking outside the box

Serving international clients in industry finance politics and NGOs

Reference projects

FVV Renewables in Transport 2050

UBA Power-to-Liquids for Aviation

BMVI German Mobility amp Fuels Strategy (MKS)

JRCEUCARCONCAWE (JEC) Well-to-Tank Analyses httpwwwlbstderessourcesdocs2016FVV_H1086_Renewables-in-Transport-2050-Kraftstoffstudie_IIpdf

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

3

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

FVV study motivation

Greenhouse gas reduction targets of 80-951990 by 2050 will require substantial contributions from the transport sector

Renewable electricity to become the primary energy source in future

100 renewable electricity in transport by 2050 ndash pie in the sky

2 archetype scenarios + 1 synthetic mix scenario

What are the consequences in terms of energy and costs

What are determinants for future use of internal combustion engines

4

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

German laquoKlimaschutzplan 2050raquo on the occasion of COP22 in Marrakesh

5

Quelle Klimaschutzplan 2050 der Bundesregierung 11112016 S 2627

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

6

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

2010 2020 2030 2040 2050

billion Pkm Aviation FootBike Public transportMot individual transport Renewbility IIVP 2030MKS 2050 ShelleMobil 2050 Grenzenlos Energiekonzept ZieleMobil 2050 Regional Verbaumlndekonzept

LBST

201

5-07

-09

Two distinct transportation demand scenarios | DE | HIGH LOW

Scenario developments 2010ndash2050 (figures rounded)

HIGH transport demand scenario [BMVI VP 2030MKS 2050]

ndash Passenger +30

ndash Freight +60

LOW transport demand scenario [eMobil 2050 bdquoRegionalldquo]

ndash Passenger -25

ndash Freight +20

7 0

200

400

600

800

1000

2010 2020 2030 2040 2050

billion tkm Aviation Ship (waterway)Train Road (other)Road (trailer truck) VP 2030LBST 2050Energiekonzept Ziel eMobil 2050 GrenzenlosVerbaumlndekonzept eMobil 2050 Regional

LBST

201

5-07

-09

BMVI ∙ German Federal Transport Ministry MKS ∙ German Mobility amp Fuels Strategy

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Target scenario ndash gradual shift from today to 100 renewable PtX by 2050

Gasolinekerosenediesel

Methanol

Methane

Hydrogen

0

10

20

30

40

50

60

70

80

90

100

2015 2020 2030 2040 2050

Shar

e r

en

wab

leGasolinekerosenedieselfrom crude oil

via PtL from renewableelectricity

Renewable share in the fuels (per MJ fuel)

8 PtL ∙ Power-to-Liquids PtX ∙ Power-to-Anything

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Definition of three distinct fuelpowertrain scenarios

PTL | Conservative scenario based on well established fuelspowertrainsinfrastructures incl ICE mild hybrids with power-to-liquids dominating all transportation modes high fuel demand

FVV | A mix of currently discussed options comprising ambitious ICE development progress incl ICE hybrids REEV BEV FCEV medium fuel demand

eMob | Derived from the study ldquoeMobil 2050rdquo [Oumlko-Institut 2015] with a dominance of electrified drivetrains low fuel demand

9

BEV ∙ Battery-electric vehicle eMob ∙ Electric mobility FCEV ∙ Fuel cell-electric vehicle FVV ∙ Research association PHEV ∙ Plug-in hybrid vehicle PTL ∙ Power-to-liquids REEV ∙ Range-extender vehicle

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Fuelpowertrain scenario | New car registrations

10

PTL CAR

[new-reg]

ICE Gasol Diesel

ICE Methane

Hybrid Gasol Diesel

Hybrid Methane

REEV Gasol Diesel

REEV Methane

BEV FCEV

2010 100 0 0 0 0 0 0 0 2020 80 0 20 0 0 0 0 0 2030 40 0 60 0 0 0 0 0 2040 10 0 90 0 0 0 0 0 2050 0 0 100 0 0 0 0 0

FVV CAR

[new-reg]

ICE Gasol Diesel

ICE Methane

Hybrid Gasol Diesel

Hybrid Methane

REEV Gasol Diesel

REEV Methane

BEV FCEV

2010 100 0 0 0 0 0 0 0

2020 36 5 45 2 6 0 4 1

2030 0 0 55 5 25 0 10 5

2040 0 0 37 2 45 0 16 9

2050 0 0 0 0 70 0 20 10

eMob CAR

[new-reg]

ICE Gasol Diesel

ICE Methane

Hybrid Gasol Diesel

Hybrid Methane

REEV Gasol Diesel

REEV Methane

BEV FCEV

2010 100 0 0 0 0 0 0 0 2020 86 5 3 0 3 0 3 0 2030 68 5 6 0 9 0 12 0 2040 0 0 10 0 17 0 72 0 2050 0 0 5 0 12 0 82 0

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

11

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Greenhouse gas emissions (example FVV scenario)

12

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Non-CO2-GHG vehicle

Methanol

H2

Electricity mix (train)

Electricity mix (04 kV)

CH4

DieselKerosene

Gasoline

Past Future

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Non-CO2-GHG vehicle

Methanol

H2

Electricity mix (train)

Electricity mix (04 kV)

CH4

DieselKerosene

Gasoline

Past Future

Greenhouse gas emissions | DE | All transport | laquoFVVraquo

13

by fuel

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future by mode

FVV + HIGH FVV + LOW

Climate impacts from high-altitude emissions (aviation) not included

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Final fuel demand electricity demand

14

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Fuel demand (TWha) | DE | All transport | laquoFVVraquo

Growth in HIGH transport demand overcompensates efficiency improvements

Relative importance of trucks and aviation in fuel demand increases

Thereof notably international aviation 15

0

100

200

300

400

500

600

700

800

900

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

Fin

al e

ne

rgy

use

(TW

hy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

FVV + HIGH FVV + LOW

0

100

200

300

400

500

600

700

800

900

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

Fin

al e

ne

rgy

use

(TW

hy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Total electricity demand in 2050 may be a factor 2 to 4 of todayrsquos electricity demand

All scenarios would likely require renewable energy imports

0

500

1000

1500

2000

2500

2015 2020 2025 2030 2035 2040 2045 2050

TWha

PTL + HIGH

PTL + LOW

FVV + HIGH

FVV + LOW

eMob + LOW

LBST

201

5-1

1-27

non-transport PtX (heat chemicals)

non-transport efficiency targets

521 TWhe net electricity consumption 2014

Electricity demand (TWhea) | DE | Today + transportation

16

1000 TWhea technical renewable electricity potential (this study)

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

hellip and cumulated investments until 2050

17

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Methodology

The cumulated investments consist of the following elements

ndash Renewable power plants

ndash PtX production plants

ndash Infrastructure for fuel transport amp distribution

Investments for end-of-life replacements are included in the cost model with a PtX plant lifetime of 25 years

Learning curves for electrolysers assumed ie the 1st PtX production plant is more expensive than the nth one

BEV home-charging assumed

Vehicle costs not included

18

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Germany

19 For comparison 2014 in Germany

Gross domestic product (GDP) = 2900 billion euroa

gt70 GW renewable power (38 GW wind onshore 3 GW wind offshore 39 GW PV)

0

200

400

600

800

1000

1200

1400

1600

PTL+HIGH PTL+LOW FVV+HIGH FVV+LOW eMob+LOW

billion euro

6200 H2 refuelling stations

4600 CH4 refueling stations

PtX production plants

360-900 GW RES power plants

PTL FVV eMob

LBST

201

5-12

-23

BEV Home charging

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

System integration of fluctating renewable power generation

20

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Efficiency vs renewables integration (Scaling indicativefor educational purpose)

Trade-off between efficiency and renewable power integration (ldquoSystemdienlichkeitrdquo)

Robust option Hydrogen

Sole option providing zero well-to-wheel emissions AND long-term energy storage Hydrogen

BEV battery-electric vehicle EV electric vehicle DSM demand-side management PTG power-to-gas PTL power-to-liquids

Electric powertrain Zero (local) emissions

demand flexible up to few hours

demand flexibility over hoursday(s) Energy storage over daysweeksmonths

demand flexibility add measures

LBST

201

5-12

-18

EV Overhead

line

BEV Charging

PTG Hydrogen

PTG Methane

PTL Gasoline Diesel

Efficiency Propulsion+Upstream

Storage density amp Demand flexibility

21

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

22

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Conclusions from the FVV Future Fuel study in a nutshell

Transportation demand development (pkm tkm) is strongest driver for fuelelectricity demand

PtX fuel costs could half between 2015 and 2050 PtL imports ~20 lower in cost Further cost reductions are subject to location-specific business cases

PtX costs are dominated by electricity costs which strongly depends on the fuel choice (H2 CH4 PTL) and associated plant efficiencies

Fuel distribution infrastructure costs are negligible compared to the upstream investments required for any of the scenarios analysed

Cumulated investments for Energiewende (energy transition) in the transportation sector seem manageable for any of the scenarios analysed

All scenarios analysed will probably exceed technicalacceptable renewable electricity potentials in Germany Import of PtL (if any) is likely for cost reasons

Transport must get more electric with regard to the fuel and the propulsion system

23 pkm ∙ person kilometre tkm ∙ tonne kilometre PtX ∙ Power-to-anything PtL ∙ Power-to-liquids

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Literature

P Schmidt W Zittel W Weindorf T Raksha (LBST)

Renewables in Transport 2050 ndash Empowering a sustainable mobility future with zero emission fuels from renewable electricity ndash Europe and Germany

Research Association for Combustion Engines eV (ed)

FVV-Report 1086 2016

Download

httpwwwfvv-netdeendownloadrenewables-in-transport-2050renewables-in-transport-2050html

24

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

LBST Experts

Patrick Schmidt (Dipl-Ing)

T +49 (0)89 608110-36 E PatrickSchmidtLBSTde

Dr Werner Zittel

Werner Weindorf (Dipl-Ing)

Tetyana Raksha (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH

Daimlerstr 15 85521 MunichOttobrunn Germany httpwwwlbstde

25

Acknowledgement

This study was financed by the FVV and supported by members of the FVV Working Group laquoFuture Fuelsraquo

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

ANNEX

26

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical renewable power generation potentials

27

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany and EU-28

Germany and the EU have (very) high technical renewable electricity potentials

ndash DE ~1000 TWha potential vs ~500 TWh net electricity consumption

ndash EU ~11000 TWha potential vs ~2800 TWh net electricity consumption

Only ~11 (DE) and ~6 (EU28) if this potentials are currently used for renewable power production

The limits to renewable power growth seem to be more of an acceptance issue than costs

[ISE 2015] states PV electricity production costs of 2-4 euroctkWh in Southern and Central Europe by 2050

Renewable power potentials assessed for solarthermal power plants could also be exploited with photovoltaics

28

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany (bars can be stacked)

29

0

500

1000

1500

2000

2500

3000

Windonshore Windoffshore PV Hydro Geothermal

Tech

nic

al p

ote

nti

al (

TWh

yr)

Net electricity consumption 2014 521 TWhyr

Lud

wig

-Bouml

lko

w-S

yste

mte

chn

ik G

mb

H (

LBST

) 2

01

5-1

0-0

5

Maximum

Minimum

Bandwidth for technical renewableenergy potentials

Assumption in this study

1000 TWhyr

Potential already exploited

Data [BMU 2010] [BMU 2012] [BWE 2013] [ISE 2015] [IWES_PV 2012] [IWES 2012] [Quaschning 2013] [TAB 2003] [UBA 2013] 2014 data [AGEB 2015] provisional as per 082015 2014 data [BDEW 2015] provisional as per 082015

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

CO2 avoidance costs

30

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

1800

2000G

aso

line

kero

sen

ed

iese

l

EE-P

tL m

eth

ano

l ro

ute

EE-P

tL F

T ro

ute

EE-P

tL S

OEC

met

han

ol r

ou

te

EE-P

tL S

OEC

-FT

rou

te

EE-C

H4

(C

NG

)

EE-C

H4

(LN

G)

EE-C

H4

(C

NG

) SO

EC

EE-C

H4

(LN

G)

SOEC

EE-C

GH

2 (

on

site

)

Elec

tric

ity

for

BEV

Liquid fuelsreference

Liquid fuels (PtL) Gaseous fuels (PtG) Electricity

FOSSIL RENEWABLE

GH

G a

void

ance

co

sts

(eurot

CO

2e

qu

ival

en

t)

2015 2020 2030 2040 2050

LBST

20

15

-12

-22

Benchmarks Fuels from

crude oil(0 eurot CO2)

-58-57

-67 -67

-58

-61

-62

-65-67

-23

CO2 avoidance costs well-to-tank [eurot CO2-eq] for PtX in DE

31

Least-cost short-term Electricity

Least-cost long-term Electricity and CGH2

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

3

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

FVV study motivation

Greenhouse gas reduction targets of 80-951990 by 2050 will require substantial contributions from the transport sector

Renewable electricity to become the primary energy source in future

100 renewable electricity in transport by 2050 ndash pie in the sky

2 archetype scenarios + 1 synthetic mix scenario

What are the consequences in terms of energy and costs

What are determinants for future use of internal combustion engines

4

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

German laquoKlimaschutzplan 2050raquo on the occasion of COP22 in Marrakesh

5

Quelle Klimaschutzplan 2050 der Bundesregierung 11112016 S 2627

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

6

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

2010 2020 2030 2040 2050

billion Pkm Aviation FootBike Public transportMot individual transport Renewbility IIVP 2030MKS 2050 ShelleMobil 2050 Grenzenlos Energiekonzept ZieleMobil 2050 Regional Verbaumlndekonzept

LBST

201

5-07

-09

Two distinct transportation demand scenarios | DE | HIGH LOW

Scenario developments 2010ndash2050 (figures rounded)

HIGH transport demand scenario [BMVI VP 2030MKS 2050]

ndash Passenger +30

ndash Freight +60

LOW transport demand scenario [eMobil 2050 bdquoRegionalldquo]

ndash Passenger -25

ndash Freight +20

7 0

200

400

600

800

1000

2010 2020 2030 2040 2050

billion tkm Aviation Ship (waterway)Train Road (other)Road (trailer truck) VP 2030LBST 2050Energiekonzept Ziel eMobil 2050 GrenzenlosVerbaumlndekonzept eMobil 2050 Regional

LBST

201

5-07

-09

BMVI ∙ German Federal Transport Ministry MKS ∙ German Mobility amp Fuels Strategy

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Target scenario ndash gradual shift from today to 100 renewable PtX by 2050

Gasolinekerosenediesel

Methanol

Methane

Hydrogen

0

10

20

30

40

50

60

70

80

90

100

2015 2020 2030 2040 2050

Shar

e r

en

wab

leGasolinekerosenedieselfrom crude oil

via PtL from renewableelectricity

Renewable share in the fuels (per MJ fuel)

8 PtL ∙ Power-to-Liquids PtX ∙ Power-to-Anything

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Definition of three distinct fuelpowertrain scenarios

PTL | Conservative scenario based on well established fuelspowertrainsinfrastructures incl ICE mild hybrids with power-to-liquids dominating all transportation modes high fuel demand

FVV | A mix of currently discussed options comprising ambitious ICE development progress incl ICE hybrids REEV BEV FCEV medium fuel demand

eMob | Derived from the study ldquoeMobil 2050rdquo [Oumlko-Institut 2015] with a dominance of electrified drivetrains low fuel demand

9

BEV ∙ Battery-electric vehicle eMob ∙ Electric mobility FCEV ∙ Fuel cell-electric vehicle FVV ∙ Research association PHEV ∙ Plug-in hybrid vehicle PTL ∙ Power-to-liquids REEV ∙ Range-extender vehicle

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Fuelpowertrain scenario | New car registrations

10

PTL CAR

[new-reg]

ICE Gasol Diesel

ICE Methane

Hybrid Gasol Diesel

Hybrid Methane

REEV Gasol Diesel

REEV Methane

BEV FCEV

2010 100 0 0 0 0 0 0 0 2020 80 0 20 0 0 0 0 0 2030 40 0 60 0 0 0 0 0 2040 10 0 90 0 0 0 0 0 2050 0 0 100 0 0 0 0 0

FVV CAR

[new-reg]

ICE Gasol Diesel

ICE Methane

Hybrid Gasol Diesel

Hybrid Methane

REEV Gasol Diesel

REEV Methane

BEV FCEV

2010 100 0 0 0 0 0 0 0

2020 36 5 45 2 6 0 4 1

2030 0 0 55 5 25 0 10 5

2040 0 0 37 2 45 0 16 9

2050 0 0 0 0 70 0 20 10

eMob CAR

[new-reg]

ICE Gasol Diesel

ICE Methane

Hybrid Gasol Diesel

Hybrid Methane

REEV Gasol Diesel

REEV Methane

BEV FCEV

2010 100 0 0 0 0 0 0 0 2020 86 5 3 0 3 0 3 0 2030 68 5 6 0 9 0 12 0 2040 0 0 10 0 17 0 72 0 2050 0 0 5 0 12 0 82 0

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

11

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Greenhouse gas emissions (example FVV scenario)

12

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Non-CO2-GHG vehicle

Methanol

H2

Electricity mix (train)

Electricity mix (04 kV)

CH4

DieselKerosene

Gasoline

Past Future

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Non-CO2-GHG vehicle

Methanol

H2

Electricity mix (train)

Electricity mix (04 kV)

CH4

DieselKerosene

Gasoline

Past Future

Greenhouse gas emissions | DE | All transport | laquoFVVraquo

13

by fuel

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future by mode

FVV + HIGH FVV + LOW

Climate impacts from high-altitude emissions (aviation) not included

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Final fuel demand electricity demand

14

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Fuel demand (TWha) | DE | All transport | laquoFVVraquo

Growth in HIGH transport demand overcompensates efficiency improvements

Relative importance of trucks and aviation in fuel demand increases

Thereof notably international aviation 15

0

100

200

300

400

500

600

700

800

900

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

Fin

al e

ne

rgy

use

(TW

hy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

FVV + HIGH FVV + LOW

0

100

200

300

400

500

600

700

800

900

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

Fin

al e

ne

rgy

use

(TW

hy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Total electricity demand in 2050 may be a factor 2 to 4 of todayrsquos electricity demand

All scenarios would likely require renewable energy imports

0

500

1000

1500

2000

2500

2015 2020 2025 2030 2035 2040 2045 2050

TWha

PTL + HIGH

PTL + LOW

FVV + HIGH

FVV + LOW

eMob + LOW

LBST

201

5-1

1-27

non-transport PtX (heat chemicals)

non-transport efficiency targets

521 TWhe net electricity consumption 2014

Electricity demand (TWhea) | DE | Today + transportation

16

1000 TWhea technical renewable electricity potential (this study)

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

hellip and cumulated investments until 2050

17

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Methodology

The cumulated investments consist of the following elements

ndash Renewable power plants

ndash PtX production plants

ndash Infrastructure for fuel transport amp distribution

Investments for end-of-life replacements are included in the cost model with a PtX plant lifetime of 25 years

Learning curves for electrolysers assumed ie the 1st PtX production plant is more expensive than the nth one

BEV home-charging assumed

Vehicle costs not included

18

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Germany

19 For comparison 2014 in Germany

Gross domestic product (GDP) = 2900 billion euroa

gt70 GW renewable power (38 GW wind onshore 3 GW wind offshore 39 GW PV)

0

200

400

600

800

1000

1200

1400

1600

PTL+HIGH PTL+LOW FVV+HIGH FVV+LOW eMob+LOW

billion euro

6200 H2 refuelling stations

4600 CH4 refueling stations

PtX production plants

360-900 GW RES power plants

PTL FVV eMob

LBST

201

5-12

-23

BEV Home charging

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

System integration of fluctating renewable power generation

20

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Efficiency vs renewables integration (Scaling indicativefor educational purpose)

Trade-off between efficiency and renewable power integration (ldquoSystemdienlichkeitrdquo)

Robust option Hydrogen

Sole option providing zero well-to-wheel emissions AND long-term energy storage Hydrogen

BEV battery-electric vehicle EV electric vehicle DSM demand-side management PTG power-to-gas PTL power-to-liquids

Electric powertrain Zero (local) emissions

demand flexible up to few hours

demand flexibility over hoursday(s) Energy storage over daysweeksmonths

demand flexibility add measures

LBST

201

5-12

-18

EV Overhead

line

BEV Charging

PTG Hydrogen

PTG Methane

PTL Gasoline Diesel

Efficiency Propulsion+Upstream

Storage density amp Demand flexibility

21

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

22

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Conclusions from the FVV Future Fuel study in a nutshell

Transportation demand development (pkm tkm) is strongest driver for fuelelectricity demand

PtX fuel costs could half between 2015 and 2050 PtL imports ~20 lower in cost Further cost reductions are subject to location-specific business cases

PtX costs are dominated by electricity costs which strongly depends on the fuel choice (H2 CH4 PTL) and associated plant efficiencies

Fuel distribution infrastructure costs are negligible compared to the upstream investments required for any of the scenarios analysed

Cumulated investments for Energiewende (energy transition) in the transportation sector seem manageable for any of the scenarios analysed

All scenarios analysed will probably exceed technicalacceptable renewable electricity potentials in Germany Import of PtL (if any) is likely for cost reasons

Transport must get more electric with regard to the fuel and the propulsion system

23 pkm ∙ person kilometre tkm ∙ tonne kilometre PtX ∙ Power-to-anything PtL ∙ Power-to-liquids

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Literature

P Schmidt W Zittel W Weindorf T Raksha (LBST)

Renewables in Transport 2050 ndash Empowering a sustainable mobility future with zero emission fuels from renewable electricity ndash Europe and Germany

Research Association for Combustion Engines eV (ed)

FVV-Report 1086 2016

Download

httpwwwfvv-netdeendownloadrenewables-in-transport-2050renewables-in-transport-2050html

24

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

LBST Experts

Patrick Schmidt (Dipl-Ing)

T +49 (0)89 608110-36 E PatrickSchmidtLBSTde

Dr Werner Zittel

Werner Weindorf (Dipl-Ing)

Tetyana Raksha (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH

Daimlerstr 15 85521 MunichOttobrunn Germany httpwwwlbstde

25

Acknowledgement

This study was financed by the FVV and supported by members of the FVV Working Group laquoFuture Fuelsraquo

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

ANNEX

26

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical renewable power generation potentials

27

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany and EU-28

Germany and the EU have (very) high technical renewable electricity potentials

ndash DE ~1000 TWha potential vs ~500 TWh net electricity consumption

ndash EU ~11000 TWha potential vs ~2800 TWh net electricity consumption

Only ~11 (DE) and ~6 (EU28) if this potentials are currently used for renewable power production

The limits to renewable power growth seem to be more of an acceptance issue than costs

[ISE 2015] states PV electricity production costs of 2-4 euroctkWh in Southern and Central Europe by 2050

Renewable power potentials assessed for solarthermal power plants could also be exploited with photovoltaics

28

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany (bars can be stacked)

29

0

500

1000

1500

2000

2500

3000

Windonshore Windoffshore PV Hydro Geothermal

Tech

nic

al p

ote

nti

al (

TWh

yr)

Net electricity consumption 2014 521 TWhyr

Lud

wig

-Bouml

lko

w-S

yste

mte

chn

ik G

mb

H (

LBST

) 2

01

5-1

0-0

5

Maximum

Minimum

Bandwidth for technical renewableenergy potentials

Assumption in this study

1000 TWhyr

Potential already exploited

Data [BMU 2010] [BMU 2012] [BWE 2013] [ISE 2015] [IWES_PV 2012] [IWES 2012] [Quaschning 2013] [TAB 2003] [UBA 2013] 2014 data [AGEB 2015] provisional as per 082015 2014 data [BDEW 2015] provisional as per 082015

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

CO2 avoidance costs

30

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

1800

2000G

aso

line

kero

sen

ed

iese

l

EE-P

tL m

eth

ano

l ro

ute

EE-P

tL F

T ro

ute

EE-P

tL S

OEC

met

han

ol r

ou

te

EE-P

tL S

OEC

-FT

rou

te

EE-C

H4

(C

NG

)

EE-C

H4

(LN

G)

EE-C

H4

(C

NG

) SO

EC

EE-C

H4

(LN

G)

SOEC

EE-C

GH

2 (

on

site

)

Elec

tric

ity

for

BEV

Liquid fuelsreference

Liquid fuels (PtL) Gaseous fuels (PtG) Electricity

FOSSIL RENEWABLE

GH

G a

void

ance

co

sts

(eurot

CO

2e

qu

ival

en

t)

2015 2020 2030 2040 2050

LBST

20

15

-12

-22

Benchmarks Fuels from

crude oil(0 eurot CO2)

-58-57

-67 -67

-58

-61

-62

-65-67

-23

CO2 avoidance costs well-to-tank [eurot CO2-eq] for PtX in DE

31

Least-cost short-term Electricity

Least-cost long-term Electricity and CGH2

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

FVV study motivation

Greenhouse gas reduction targets of 80-951990 by 2050 will require substantial contributions from the transport sector

Renewable electricity to become the primary energy source in future

100 renewable electricity in transport by 2050 ndash pie in the sky

2 archetype scenarios + 1 synthetic mix scenario

What are the consequences in terms of energy and costs

What are determinants for future use of internal combustion engines

4

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

German laquoKlimaschutzplan 2050raquo on the occasion of COP22 in Marrakesh

5

Quelle Klimaschutzplan 2050 der Bundesregierung 11112016 S 2627

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

6

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

2010 2020 2030 2040 2050

billion Pkm Aviation FootBike Public transportMot individual transport Renewbility IIVP 2030MKS 2050 ShelleMobil 2050 Grenzenlos Energiekonzept ZieleMobil 2050 Regional Verbaumlndekonzept

LBST

201

5-07

-09

Two distinct transportation demand scenarios | DE | HIGH LOW

Scenario developments 2010ndash2050 (figures rounded)

HIGH transport demand scenario [BMVI VP 2030MKS 2050]

ndash Passenger +30

ndash Freight +60

LOW transport demand scenario [eMobil 2050 bdquoRegionalldquo]

ndash Passenger -25

ndash Freight +20

7 0

200

400

600

800

1000

2010 2020 2030 2040 2050

billion tkm Aviation Ship (waterway)Train Road (other)Road (trailer truck) VP 2030LBST 2050Energiekonzept Ziel eMobil 2050 GrenzenlosVerbaumlndekonzept eMobil 2050 Regional

LBST

201

5-07

-09

BMVI ∙ German Federal Transport Ministry MKS ∙ German Mobility amp Fuels Strategy

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Target scenario ndash gradual shift from today to 100 renewable PtX by 2050

Gasolinekerosenediesel

Methanol

Methane

Hydrogen

0

10

20

30

40

50

60

70

80

90

100

2015 2020 2030 2040 2050

Shar

e r

en

wab

leGasolinekerosenedieselfrom crude oil

via PtL from renewableelectricity

Renewable share in the fuels (per MJ fuel)

8 PtL ∙ Power-to-Liquids PtX ∙ Power-to-Anything

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Definition of three distinct fuelpowertrain scenarios

PTL | Conservative scenario based on well established fuelspowertrainsinfrastructures incl ICE mild hybrids with power-to-liquids dominating all transportation modes high fuel demand

FVV | A mix of currently discussed options comprising ambitious ICE development progress incl ICE hybrids REEV BEV FCEV medium fuel demand

eMob | Derived from the study ldquoeMobil 2050rdquo [Oumlko-Institut 2015] with a dominance of electrified drivetrains low fuel demand

9

BEV ∙ Battery-electric vehicle eMob ∙ Electric mobility FCEV ∙ Fuel cell-electric vehicle FVV ∙ Research association PHEV ∙ Plug-in hybrid vehicle PTL ∙ Power-to-liquids REEV ∙ Range-extender vehicle

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Fuelpowertrain scenario | New car registrations

10

PTL CAR

[new-reg]

ICE Gasol Diesel

ICE Methane

Hybrid Gasol Diesel

Hybrid Methane

REEV Gasol Diesel

REEV Methane

BEV FCEV

2010 100 0 0 0 0 0 0 0 2020 80 0 20 0 0 0 0 0 2030 40 0 60 0 0 0 0 0 2040 10 0 90 0 0 0 0 0 2050 0 0 100 0 0 0 0 0

FVV CAR

[new-reg]

ICE Gasol Diesel

ICE Methane

Hybrid Gasol Diesel

Hybrid Methane

REEV Gasol Diesel

REEV Methane

BEV FCEV

2010 100 0 0 0 0 0 0 0

2020 36 5 45 2 6 0 4 1

2030 0 0 55 5 25 0 10 5

2040 0 0 37 2 45 0 16 9

2050 0 0 0 0 70 0 20 10

eMob CAR

[new-reg]

ICE Gasol Diesel

ICE Methane

Hybrid Gasol Diesel

Hybrid Methane

REEV Gasol Diesel

REEV Methane

BEV FCEV

2010 100 0 0 0 0 0 0 0 2020 86 5 3 0 3 0 3 0 2030 68 5 6 0 9 0 12 0 2040 0 0 10 0 17 0 72 0 2050 0 0 5 0 12 0 82 0

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

11

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Greenhouse gas emissions (example FVV scenario)

12

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Non-CO2-GHG vehicle

Methanol

H2

Electricity mix (train)

Electricity mix (04 kV)

CH4

DieselKerosene

Gasoline

Past Future

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Non-CO2-GHG vehicle

Methanol

H2

Electricity mix (train)

Electricity mix (04 kV)

CH4

DieselKerosene

Gasoline

Past Future

Greenhouse gas emissions | DE | All transport | laquoFVVraquo

13

by fuel

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future by mode

FVV + HIGH FVV + LOW

Climate impacts from high-altitude emissions (aviation) not included

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Final fuel demand electricity demand

14

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Fuel demand (TWha) | DE | All transport | laquoFVVraquo

Growth in HIGH transport demand overcompensates efficiency improvements

Relative importance of trucks and aviation in fuel demand increases

Thereof notably international aviation 15

0

100

200

300

400

500

600

700

800

900

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

Fin

al e

ne

rgy

use

(TW

hy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

FVV + HIGH FVV + LOW

0

100

200

300

400

500

600

700

800

900

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

Fin

al e

ne

rgy

use

(TW

hy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Total electricity demand in 2050 may be a factor 2 to 4 of todayrsquos electricity demand

All scenarios would likely require renewable energy imports

0

500

1000

1500

2000

2500

2015 2020 2025 2030 2035 2040 2045 2050

TWha

PTL + HIGH

PTL + LOW

FVV + HIGH

FVV + LOW

eMob + LOW

LBST

201

5-1

1-27

non-transport PtX (heat chemicals)

non-transport efficiency targets

521 TWhe net electricity consumption 2014

Electricity demand (TWhea) | DE | Today + transportation

16

1000 TWhea technical renewable electricity potential (this study)

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

hellip and cumulated investments until 2050

17

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Methodology

The cumulated investments consist of the following elements

ndash Renewable power plants

ndash PtX production plants

ndash Infrastructure for fuel transport amp distribution

Investments for end-of-life replacements are included in the cost model with a PtX plant lifetime of 25 years

Learning curves for electrolysers assumed ie the 1st PtX production plant is more expensive than the nth one

BEV home-charging assumed

Vehicle costs not included

18

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Germany

19 For comparison 2014 in Germany

Gross domestic product (GDP) = 2900 billion euroa

gt70 GW renewable power (38 GW wind onshore 3 GW wind offshore 39 GW PV)

0

200

400

600

800

1000

1200

1400

1600

PTL+HIGH PTL+LOW FVV+HIGH FVV+LOW eMob+LOW

billion euro

6200 H2 refuelling stations

4600 CH4 refueling stations

PtX production plants

360-900 GW RES power plants

PTL FVV eMob

LBST

201

5-12

-23

BEV Home charging

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

System integration of fluctating renewable power generation

20

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Efficiency vs renewables integration (Scaling indicativefor educational purpose)

Trade-off between efficiency and renewable power integration (ldquoSystemdienlichkeitrdquo)

Robust option Hydrogen

Sole option providing zero well-to-wheel emissions AND long-term energy storage Hydrogen

BEV battery-electric vehicle EV electric vehicle DSM demand-side management PTG power-to-gas PTL power-to-liquids

Electric powertrain Zero (local) emissions

demand flexible up to few hours

demand flexibility over hoursday(s) Energy storage over daysweeksmonths

demand flexibility add measures

LBST

201

5-12

-18

EV Overhead

line

BEV Charging

PTG Hydrogen

PTG Methane

PTL Gasoline Diesel

Efficiency Propulsion+Upstream

Storage density amp Demand flexibility

21

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

22

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Conclusions from the FVV Future Fuel study in a nutshell

Transportation demand development (pkm tkm) is strongest driver for fuelelectricity demand

PtX fuel costs could half between 2015 and 2050 PtL imports ~20 lower in cost Further cost reductions are subject to location-specific business cases

PtX costs are dominated by electricity costs which strongly depends on the fuel choice (H2 CH4 PTL) and associated plant efficiencies

Fuel distribution infrastructure costs are negligible compared to the upstream investments required for any of the scenarios analysed

Cumulated investments for Energiewende (energy transition) in the transportation sector seem manageable for any of the scenarios analysed

All scenarios analysed will probably exceed technicalacceptable renewable electricity potentials in Germany Import of PtL (if any) is likely for cost reasons

Transport must get more electric with regard to the fuel and the propulsion system

23 pkm ∙ person kilometre tkm ∙ tonne kilometre PtX ∙ Power-to-anything PtL ∙ Power-to-liquids

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Literature

P Schmidt W Zittel W Weindorf T Raksha (LBST)

Renewables in Transport 2050 ndash Empowering a sustainable mobility future with zero emission fuels from renewable electricity ndash Europe and Germany

Research Association for Combustion Engines eV (ed)

FVV-Report 1086 2016

Download

httpwwwfvv-netdeendownloadrenewables-in-transport-2050renewables-in-transport-2050html

24

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

LBST Experts

Patrick Schmidt (Dipl-Ing)

T +49 (0)89 608110-36 E PatrickSchmidtLBSTde

Dr Werner Zittel

Werner Weindorf (Dipl-Ing)

Tetyana Raksha (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH

Daimlerstr 15 85521 MunichOttobrunn Germany httpwwwlbstde

25

Acknowledgement

This study was financed by the FVV and supported by members of the FVV Working Group laquoFuture Fuelsraquo

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

ANNEX

26

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical renewable power generation potentials

27

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany and EU-28

Germany and the EU have (very) high technical renewable electricity potentials

ndash DE ~1000 TWha potential vs ~500 TWh net electricity consumption

ndash EU ~11000 TWha potential vs ~2800 TWh net electricity consumption

Only ~11 (DE) and ~6 (EU28) if this potentials are currently used for renewable power production

The limits to renewable power growth seem to be more of an acceptance issue than costs

[ISE 2015] states PV electricity production costs of 2-4 euroctkWh in Southern and Central Europe by 2050

Renewable power potentials assessed for solarthermal power plants could also be exploited with photovoltaics

28

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany (bars can be stacked)

29

0

500

1000

1500

2000

2500

3000

Windonshore Windoffshore PV Hydro Geothermal

Tech

nic

al p

ote

nti

al (

TWh

yr)

Net electricity consumption 2014 521 TWhyr

Lud

wig

-Bouml

lko

w-S

yste

mte

chn

ik G

mb

H (

LBST

) 2

01

5-1

0-0

5

Maximum

Minimum

Bandwidth for technical renewableenergy potentials

Assumption in this study

1000 TWhyr

Potential already exploited

Data [BMU 2010] [BMU 2012] [BWE 2013] [ISE 2015] [IWES_PV 2012] [IWES 2012] [Quaschning 2013] [TAB 2003] [UBA 2013] 2014 data [AGEB 2015] provisional as per 082015 2014 data [BDEW 2015] provisional as per 082015

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

CO2 avoidance costs

30

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

1800

2000G

aso

line

kero

sen

ed

iese

l

EE-P

tL m

eth

ano

l ro

ute

EE-P

tL F

T ro

ute

EE-P

tL S

OEC

met

han

ol r

ou

te

EE-P

tL S

OEC

-FT

rou

te

EE-C

H4

(C

NG

)

EE-C

H4

(LN

G)

EE-C

H4

(C

NG

) SO

EC

EE-C

H4

(LN

G)

SOEC

EE-C

GH

2 (

on

site

)

Elec

tric

ity

for

BEV

Liquid fuelsreference

Liquid fuels (PtL) Gaseous fuels (PtG) Electricity

FOSSIL RENEWABLE

GH

G a

void

ance

co

sts

(eurot

CO

2e

qu

ival

en

t)

2015 2020 2030 2040 2050

LBST

20

15

-12

-22

Benchmarks Fuels from

crude oil(0 eurot CO2)

-58-57

-67 -67

-58

-61

-62

-65-67

-23

CO2 avoidance costs well-to-tank [eurot CO2-eq] for PtX in DE

31

Least-cost short-term Electricity

Least-cost long-term Electricity and CGH2

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

German laquoKlimaschutzplan 2050raquo on the occasion of COP22 in Marrakesh

5

Quelle Klimaschutzplan 2050 der Bundesregierung 11112016 S 2627

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

6

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

2010 2020 2030 2040 2050

billion Pkm Aviation FootBike Public transportMot individual transport Renewbility IIVP 2030MKS 2050 ShelleMobil 2050 Grenzenlos Energiekonzept ZieleMobil 2050 Regional Verbaumlndekonzept

LBST

201

5-07

-09

Two distinct transportation demand scenarios | DE | HIGH LOW

Scenario developments 2010ndash2050 (figures rounded)

HIGH transport demand scenario [BMVI VP 2030MKS 2050]

ndash Passenger +30

ndash Freight +60

LOW transport demand scenario [eMobil 2050 bdquoRegionalldquo]

ndash Passenger -25

ndash Freight +20

7 0

200

400

600

800

1000

2010 2020 2030 2040 2050

billion tkm Aviation Ship (waterway)Train Road (other)Road (trailer truck) VP 2030LBST 2050Energiekonzept Ziel eMobil 2050 GrenzenlosVerbaumlndekonzept eMobil 2050 Regional

LBST

201

5-07

-09

BMVI ∙ German Federal Transport Ministry MKS ∙ German Mobility amp Fuels Strategy

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Target scenario ndash gradual shift from today to 100 renewable PtX by 2050

Gasolinekerosenediesel

Methanol

Methane

Hydrogen

0

10

20

30

40

50

60

70

80

90

100

2015 2020 2030 2040 2050

Shar

e r

en

wab

leGasolinekerosenedieselfrom crude oil

via PtL from renewableelectricity

Renewable share in the fuels (per MJ fuel)

8 PtL ∙ Power-to-Liquids PtX ∙ Power-to-Anything

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Definition of three distinct fuelpowertrain scenarios

PTL | Conservative scenario based on well established fuelspowertrainsinfrastructures incl ICE mild hybrids with power-to-liquids dominating all transportation modes high fuel demand

FVV | A mix of currently discussed options comprising ambitious ICE development progress incl ICE hybrids REEV BEV FCEV medium fuel demand

eMob | Derived from the study ldquoeMobil 2050rdquo [Oumlko-Institut 2015] with a dominance of electrified drivetrains low fuel demand

9

BEV ∙ Battery-electric vehicle eMob ∙ Electric mobility FCEV ∙ Fuel cell-electric vehicle FVV ∙ Research association PHEV ∙ Plug-in hybrid vehicle PTL ∙ Power-to-liquids REEV ∙ Range-extender vehicle

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Fuelpowertrain scenario | New car registrations

10

PTL CAR

[new-reg]

ICE Gasol Diesel

ICE Methane

Hybrid Gasol Diesel

Hybrid Methane

REEV Gasol Diesel

REEV Methane

BEV FCEV

2010 100 0 0 0 0 0 0 0 2020 80 0 20 0 0 0 0 0 2030 40 0 60 0 0 0 0 0 2040 10 0 90 0 0 0 0 0 2050 0 0 100 0 0 0 0 0

FVV CAR

[new-reg]

ICE Gasol Diesel

ICE Methane

Hybrid Gasol Diesel

Hybrid Methane

REEV Gasol Diesel

REEV Methane

BEV FCEV

2010 100 0 0 0 0 0 0 0

2020 36 5 45 2 6 0 4 1

2030 0 0 55 5 25 0 10 5

2040 0 0 37 2 45 0 16 9

2050 0 0 0 0 70 0 20 10

eMob CAR

[new-reg]

ICE Gasol Diesel

ICE Methane

Hybrid Gasol Diesel

Hybrid Methane

REEV Gasol Diesel

REEV Methane

BEV FCEV

2010 100 0 0 0 0 0 0 0 2020 86 5 3 0 3 0 3 0 2030 68 5 6 0 9 0 12 0 2040 0 0 10 0 17 0 72 0 2050 0 0 5 0 12 0 82 0

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

11

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Greenhouse gas emissions (example FVV scenario)

12

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Non-CO2-GHG vehicle

Methanol

H2

Electricity mix (train)

Electricity mix (04 kV)

CH4

DieselKerosene

Gasoline

Past Future

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Non-CO2-GHG vehicle

Methanol

H2

Electricity mix (train)

Electricity mix (04 kV)

CH4

DieselKerosene

Gasoline

Past Future

Greenhouse gas emissions | DE | All transport | laquoFVVraquo

13

by fuel

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future by mode

FVV + HIGH FVV + LOW

Climate impacts from high-altitude emissions (aviation) not included

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Final fuel demand electricity demand

14

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Fuel demand (TWha) | DE | All transport | laquoFVVraquo

Growth in HIGH transport demand overcompensates efficiency improvements

Relative importance of trucks and aviation in fuel demand increases

Thereof notably international aviation 15

0

100

200

300

400

500

600

700

800

900

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

Fin

al e

ne

rgy

use

(TW

hy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

FVV + HIGH FVV + LOW

0

100

200

300

400

500

600

700

800

900

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

Fin

al e

ne

rgy

use

(TW

hy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Total electricity demand in 2050 may be a factor 2 to 4 of todayrsquos electricity demand

All scenarios would likely require renewable energy imports

0

500

1000

1500

2000

2500

2015 2020 2025 2030 2035 2040 2045 2050

TWha

PTL + HIGH

PTL + LOW

FVV + HIGH

FVV + LOW

eMob + LOW

LBST

201

5-1

1-27

non-transport PtX (heat chemicals)

non-transport efficiency targets

521 TWhe net electricity consumption 2014

Electricity demand (TWhea) | DE | Today + transportation

16

1000 TWhea technical renewable electricity potential (this study)

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

hellip and cumulated investments until 2050

17

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Methodology

The cumulated investments consist of the following elements

ndash Renewable power plants

ndash PtX production plants

ndash Infrastructure for fuel transport amp distribution

Investments for end-of-life replacements are included in the cost model with a PtX plant lifetime of 25 years

Learning curves for electrolysers assumed ie the 1st PtX production plant is more expensive than the nth one

BEV home-charging assumed

Vehicle costs not included

18

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Germany

19 For comparison 2014 in Germany

Gross domestic product (GDP) = 2900 billion euroa

gt70 GW renewable power (38 GW wind onshore 3 GW wind offshore 39 GW PV)

0

200

400

600

800

1000

1200

1400

1600

PTL+HIGH PTL+LOW FVV+HIGH FVV+LOW eMob+LOW

billion euro

6200 H2 refuelling stations

4600 CH4 refueling stations

PtX production plants

360-900 GW RES power plants

PTL FVV eMob

LBST

201

5-12

-23

BEV Home charging

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

System integration of fluctating renewable power generation

20

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Efficiency vs renewables integration (Scaling indicativefor educational purpose)

Trade-off between efficiency and renewable power integration (ldquoSystemdienlichkeitrdquo)

Robust option Hydrogen

Sole option providing zero well-to-wheel emissions AND long-term energy storage Hydrogen

BEV battery-electric vehicle EV electric vehicle DSM demand-side management PTG power-to-gas PTL power-to-liquids

Electric powertrain Zero (local) emissions

demand flexible up to few hours

demand flexibility over hoursday(s) Energy storage over daysweeksmonths

demand flexibility add measures

LBST

201

5-12

-18

EV Overhead

line

BEV Charging

PTG Hydrogen

PTG Methane

PTL Gasoline Diesel

Efficiency Propulsion+Upstream

Storage density amp Demand flexibility

21

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

22

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Conclusions from the FVV Future Fuel study in a nutshell

Transportation demand development (pkm tkm) is strongest driver for fuelelectricity demand

PtX fuel costs could half between 2015 and 2050 PtL imports ~20 lower in cost Further cost reductions are subject to location-specific business cases

PtX costs are dominated by electricity costs which strongly depends on the fuel choice (H2 CH4 PTL) and associated plant efficiencies

Fuel distribution infrastructure costs are negligible compared to the upstream investments required for any of the scenarios analysed

Cumulated investments for Energiewende (energy transition) in the transportation sector seem manageable for any of the scenarios analysed

All scenarios analysed will probably exceed technicalacceptable renewable electricity potentials in Germany Import of PtL (if any) is likely for cost reasons

Transport must get more electric with regard to the fuel and the propulsion system

23 pkm ∙ person kilometre tkm ∙ tonne kilometre PtX ∙ Power-to-anything PtL ∙ Power-to-liquids

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Literature

P Schmidt W Zittel W Weindorf T Raksha (LBST)

Renewables in Transport 2050 ndash Empowering a sustainable mobility future with zero emission fuels from renewable electricity ndash Europe and Germany

Research Association for Combustion Engines eV (ed)

FVV-Report 1086 2016

Download

httpwwwfvv-netdeendownloadrenewables-in-transport-2050renewables-in-transport-2050html

24

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

LBST Experts

Patrick Schmidt (Dipl-Ing)

T +49 (0)89 608110-36 E PatrickSchmidtLBSTde

Dr Werner Zittel

Werner Weindorf (Dipl-Ing)

Tetyana Raksha (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH

Daimlerstr 15 85521 MunichOttobrunn Germany httpwwwlbstde

25

Acknowledgement

This study was financed by the FVV and supported by members of the FVV Working Group laquoFuture Fuelsraquo

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

ANNEX

26

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical renewable power generation potentials

27

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany and EU-28

Germany and the EU have (very) high technical renewable electricity potentials

ndash DE ~1000 TWha potential vs ~500 TWh net electricity consumption

ndash EU ~11000 TWha potential vs ~2800 TWh net electricity consumption

Only ~11 (DE) and ~6 (EU28) if this potentials are currently used for renewable power production

The limits to renewable power growth seem to be more of an acceptance issue than costs

[ISE 2015] states PV electricity production costs of 2-4 euroctkWh in Southern and Central Europe by 2050

Renewable power potentials assessed for solarthermal power plants could also be exploited with photovoltaics

28

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany (bars can be stacked)

29

0

500

1000

1500

2000

2500

3000

Windonshore Windoffshore PV Hydro Geothermal

Tech

nic

al p

ote

nti

al (

TWh

yr)

Net electricity consumption 2014 521 TWhyr

Lud

wig

-Bouml

lko

w-S

yste

mte

chn

ik G

mb

H (

LBST

) 2

01

5-1

0-0

5

Maximum

Minimum

Bandwidth for technical renewableenergy potentials

Assumption in this study

1000 TWhyr

Potential already exploited

Data [BMU 2010] [BMU 2012] [BWE 2013] [ISE 2015] [IWES_PV 2012] [IWES 2012] [Quaschning 2013] [TAB 2003] [UBA 2013] 2014 data [AGEB 2015] provisional as per 082015 2014 data [BDEW 2015] provisional as per 082015

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

CO2 avoidance costs

30

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

1800

2000G

aso

line

kero

sen

ed

iese

l

EE-P

tL m

eth

ano

l ro

ute

EE-P

tL F

T ro

ute

EE-P

tL S

OEC

met

han

ol r

ou

te

EE-P

tL S

OEC

-FT

rou

te

EE-C

H4

(C

NG

)

EE-C

H4

(LN

G)

EE-C

H4

(C

NG

) SO

EC

EE-C

H4

(LN

G)

SOEC

EE-C

GH

2 (

on

site

)

Elec

tric

ity

for

BEV

Liquid fuelsreference

Liquid fuels (PtL) Gaseous fuels (PtG) Electricity

FOSSIL RENEWABLE

GH

G a

void

ance

co

sts

(eurot

CO

2e

qu

ival

en

t)

2015 2020 2030 2040 2050

LBST

20

15

-12

-22

Benchmarks Fuels from

crude oil(0 eurot CO2)

-58-57

-67 -67

-58

-61

-62

-65-67

-23

CO2 avoidance costs well-to-tank [eurot CO2-eq] for PtX in DE

31

Least-cost short-term Electricity

Least-cost long-term Electricity and CGH2

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

6

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

2010 2020 2030 2040 2050

billion Pkm Aviation FootBike Public transportMot individual transport Renewbility IIVP 2030MKS 2050 ShelleMobil 2050 Grenzenlos Energiekonzept ZieleMobil 2050 Regional Verbaumlndekonzept

LBST

201

5-07

-09

Two distinct transportation demand scenarios | DE | HIGH LOW

Scenario developments 2010ndash2050 (figures rounded)

HIGH transport demand scenario [BMVI VP 2030MKS 2050]

ndash Passenger +30

ndash Freight +60

LOW transport demand scenario [eMobil 2050 bdquoRegionalldquo]

ndash Passenger -25

ndash Freight +20

7 0

200

400

600

800

1000

2010 2020 2030 2040 2050

billion tkm Aviation Ship (waterway)Train Road (other)Road (trailer truck) VP 2030LBST 2050Energiekonzept Ziel eMobil 2050 GrenzenlosVerbaumlndekonzept eMobil 2050 Regional

LBST

201

5-07

-09

BMVI ∙ German Federal Transport Ministry MKS ∙ German Mobility amp Fuels Strategy

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Target scenario ndash gradual shift from today to 100 renewable PtX by 2050

Gasolinekerosenediesel

Methanol

Methane

Hydrogen

0

10

20

30

40

50

60

70

80

90

100

2015 2020 2030 2040 2050

Shar

e r

en

wab

leGasolinekerosenedieselfrom crude oil

via PtL from renewableelectricity

Renewable share in the fuels (per MJ fuel)

8 PtL ∙ Power-to-Liquids PtX ∙ Power-to-Anything

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Definition of three distinct fuelpowertrain scenarios

PTL | Conservative scenario based on well established fuelspowertrainsinfrastructures incl ICE mild hybrids with power-to-liquids dominating all transportation modes high fuel demand

FVV | A mix of currently discussed options comprising ambitious ICE development progress incl ICE hybrids REEV BEV FCEV medium fuel demand

eMob | Derived from the study ldquoeMobil 2050rdquo [Oumlko-Institut 2015] with a dominance of electrified drivetrains low fuel demand

9

BEV ∙ Battery-electric vehicle eMob ∙ Electric mobility FCEV ∙ Fuel cell-electric vehicle FVV ∙ Research association PHEV ∙ Plug-in hybrid vehicle PTL ∙ Power-to-liquids REEV ∙ Range-extender vehicle

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Fuelpowertrain scenario | New car registrations

10

PTL CAR

[new-reg]

ICE Gasol Diesel

ICE Methane

Hybrid Gasol Diesel

Hybrid Methane

REEV Gasol Diesel

REEV Methane

BEV FCEV

2010 100 0 0 0 0 0 0 0 2020 80 0 20 0 0 0 0 0 2030 40 0 60 0 0 0 0 0 2040 10 0 90 0 0 0 0 0 2050 0 0 100 0 0 0 0 0

FVV CAR

[new-reg]

ICE Gasol Diesel

ICE Methane

Hybrid Gasol Diesel

Hybrid Methane

REEV Gasol Diesel

REEV Methane

BEV FCEV

2010 100 0 0 0 0 0 0 0

2020 36 5 45 2 6 0 4 1

2030 0 0 55 5 25 0 10 5

2040 0 0 37 2 45 0 16 9

2050 0 0 0 0 70 0 20 10

eMob CAR

[new-reg]

ICE Gasol Diesel

ICE Methane

Hybrid Gasol Diesel

Hybrid Methane

REEV Gasol Diesel

REEV Methane

BEV FCEV

2010 100 0 0 0 0 0 0 0 2020 86 5 3 0 3 0 3 0 2030 68 5 6 0 9 0 12 0 2040 0 0 10 0 17 0 72 0 2050 0 0 5 0 12 0 82 0

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

11

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Greenhouse gas emissions (example FVV scenario)

12

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Non-CO2-GHG vehicle

Methanol

H2

Electricity mix (train)

Electricity mix (04 kV)

CH4

DieselKerosene

Gasoline

Past Future

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Non-CO2-GHG vehicle

Methanol

H2

Electricity mix (train)

Electricity mix (04 kV)

CH4

DieselKerosene

Gasoline

Past Future

Greenhouse gas emissions | DE | All transport | laquoFVVraquo

13

by fuel

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future by mode

FVV + HIGH FVV + LOW

Climate impacts from high-altitude emissions (aviation) not included

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Final fuel demand electricity demand

14

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Fuel demand (TWha) | DE | All transport | laquoFVVraquo

Growth in HIGH transport demand overcompensates efficiency improvements

Relative importance of trucks and aviation in fuel demand increases

Thereof notably international aviation 15

0

100

200

300

400

500

600

700

800

900

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

Fin

al e

ne

rgy

use

(TW

hy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

FVV + HIGH FVV + LOW

0

100

200

300

400

500

600

700

800

900

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

Fin

al e

ne

rgy

use

(TW

hy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Total electricity demand in 2050 may be a factor 2 to 4 of todayrsquos electricity demand

All scenarios would likely require renewable energy imports

0

500

1000

1500

2000

2500

2015 2020 2025 2030 2035 2040 2045 2050

TWha

PTL + HIGH

PTL + LOW

FVV + HIGH

FVV + LOW

eMob + LOW

LBST

201

5-1

1-27

non-transport PtX (heat chemicals)

non-transport efficiency targets

521 TWhe net electricity consumption 2014

Electricity demand (TWhea) | DE | Today + transportation

16

1000 TWhea technical renewable electricity potential (this study)

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

hellip and cumulated investments until 2050

17

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Methodology

The cumulated investments consist of the following elements

ndash Renewable power plants

ndash PtX production plants

ndash Infrastructure for fuel transport amp distribution

Investments for end-of-life replacements are included in the cost model with a PtX plant lifetime of 25 years

Learning curves for electrolysers assumed ie the 1st PtX production plant is more expensive than the nth one

BEV home-charging assumed

Vehicle costs not included

18

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Germany

19 For comparison 2014 in Germany

Gross domestic product (GDP) = 2900 billion euroa

gt70 GW renewable power (38 GW wind onshore 3 GW wind offshore 39 GW PV)

0

200

400

600

800

1000

1200

1400

1600

PTL+HIGH PTL+LOW FVV+HIGH FVV+LOW eMob+LOW

billion euro

6200 H2 refuelling stations

4600 CH4 refueling stations

PtX production plants

360-900 GW RES power plants

PTL FVV eMob

LBST

201

5-12

-23

BEV Home charging

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

System integration of fluctating renewable power generation

20

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Efficiency vs renewables integration (Scaling indicativefor educational purpose)

Trade-off between efficiency and renewable power integration (ldquoSystemdienlichkeitrdquo)

Robust option Hydrogen

Sole option providing zero well-to-wheel emissions AND long-term energy storage Hydrogen

BEV battery-electric vehicle EV electric vehicle DSM demand-side management PTG power-to-gas PTL power-to-liquids

Electric powertrain Zero (local) emissions

demand flexible up to few hours

demand flexibility over hoursday(s) Energy storage over daysweeksmonths

demand flexibility add measures

LBST

201

5-12

-18

EV Overhead

line

BEV Charging

PTG Hydrogen

PTG Methane

PTL Gasoline Diesel

Efficiency Propulsion+Upstream

Storage density amp Demand flexibility

21

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

22

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Conclusions from the FVV Future Fuel study in a nutshell

Transportation demand development (pkm tkm) is strongest driver for fuelelectricity demand

PtX fuel costs could half between 2015 and 2050 PtL imports ~20 lower in cost Further cost reductions are subject to location-specific business cases

PtX costs are dominated by electricity costs which strongly depends on the fuel choice (H2 CH4 PTL) and associated plant efficiencies

Fuel distribution infrastructure costs are negligible compared to the upstream investments required for any of the scenarios analysed

Cumulated investments for Energiewende (energy transition) in the transportation sector seem manageable for any of the scenarios analysed

All scenarios analysed will probably exceed technicalacceptable renewable electricity potentials in Germany Import of PtL (if any) is likely for cost reasons

Transport must get more electric with regard to the fuel and the propulsion system

23 pkm ∙ person kilometre tkm ∙ tonne kilometre PtX ∙ Power-to-anything PtL ∙ Power-to-liquids

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Literature

P Schmidt W Zittel W Weindorf T Raksha (LBST)

Renewables in Transport 2050 ndash Empowering a sustainable mobility future with zero emission fuels from renewable electricity ndash Europe and Germany

Research Association for Combustion Engines eV (ed)

FVV-Report 1086 2016

Download

httpwwwfvv-netdeendownloadrenewables-in-transport-2050renewables-in-transport-2050html

24

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

LBST Experts

Patrick Schmidt (Dipl-Ing)

T +49 (0)89 608110-36 E PatrickSchmidtLBSTde

Dr Werner Zittel

Werner Weindorf (Dipl-Ing)

Tetyana Raksha (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH

Daimlerstr 15 85521 MunichOttobrunn Germany httpwwwlbstde

25

Acknowledgement

This study was financed by the FVV and supported by members of the FVV Working Group laquoFuture Fuelsraquo

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

ANNEX

26

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical renewable power generation potentials

27

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany and EU-28

Germany and the EU have (very) high technical renewable electricity potentials

ndash DE ~1000 TWha potential vs ~500 TWh net electricity consumption

ndash EU ~11000 TWha potential vs ~2800 TWh net electricity consumption

Only ~11 (DE) and ~6 (EU28) if this potentials are currently used for renewable power production

The limits to renewable power growth seem to be more of an acceptance issue than costs

[ISE 2015] states PV electricity production costs of 2-4 euroctkWh in Southern and Central Europe by 2050

Renewable power potentials assessed for solarthermal power plants could also be exploited with photovoltaics

28

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany (bars can be stacked)

29

0

500

1000

1500

2000

2500

3000

Windonshore Windoffshore PV Hydro Geothermal

Tech

nic

al p

ote

nti

al (

TWh

yr)

Net electricity consumption 2014 521 TWhyr

Lud

wig

-Bouml

lko

w-S

yste

mte

chn

ik G

mb

H (

LBST

) 2

01

5-1

0-0

5

Maximum

Minimum

Bandwidth for technical renewableenergy potentials

Assumption in this study

1000 TWhyr

Potential already exploited

Data [BMU 2010] [BMU 2012] [BWE 2013] [ISE 2015] [IWES_PV 2012] [IWES 2012] [Quaschning 2013] [TAB 2003] [UBA 2013] 2014 data [AGEB 2015] provisional as per 082015 2014 data [BDEW 2015] provisional as per 082015

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

CO2 avoidance costs

30

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

1800

2000G

aso

line

kero

sen

ed

iese

l

EE-P

tL m

eth

ano

l ro

ute

EE-P

tL F

T ro

ute

EE-P

tL S

OEC

met

han

ol r

ou

te

EE-P

tL S

OEC

-FT

rou

te

EE-C

H4

(C

NG

)

EE-C

H4

(LN

G)

EE-C

H4

(C

NG

) SO

EC

EE-C

H4

(LN

G)

SOEC

EE-C

GH

2 (

on

site

)

Elec

tric

ity

for

BEV

Liquid fuelsreference

Liquid fuels (PtL) Gaseous fuels (PtG) Electricity

FOSSIL RENEWABLE

GH

G a

void

ance

co

sts

(eurot

CO

2e

qu

ival

en

t)

2015 2020 2030 2040 2050

LBST

20

15

-12

-22

Benchmarks Fuels from

crude oil(0 eurot CO2)

-58-57

-67 -67

-58

-61

-62

-65-67

-23

CO2 avoidance costs well-to-tank [eurot CO2-eq] for PtX in DE

31

Least-cost short-term Electricity

Least-cost long-term Electricity and CGH2

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

2010 2020 2030 2040 2050

billion Pkm Aviation FootBike Public transportMot individual transport Renewbility IIVP 2030MKS 2050 ShelleMobil 2050 Grenzenlos Energiekonzept ZieleMobil 2050 Regional Verbaumlndekonzept

LBST

201

5-07

-09

Two distinct transportation demand scenarios | DE | HIGH LOW

Scenario developments 2010ndash2050 (figures rounded)

HIGH transport demand scenario [BMVI VP 2030MKS 2050]

ndash Passenger +30

ndash Freight +60

LOW transport demand scenario [eMobil 2050 bdquoRegionalldquo]

ndash Passenger -25

ndash Freight +20

7 0

200

400

600

800

1000

2010 2020 2030 2040 2050

billion tkm Aviation Ship (waterway)Train Road (other)Road (trailer truck) VP 2030LBST 2050Energiekonzept Ziel eMobil 2050 GrenzenlosVerbaumlndekonzept eMobil 2050 Regional

LBST

201

5-07

-09

BMVI ∙ German Federal Transport Ministry MKS ∙ German Mobility amp Fuels Strategy

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Target scenario ndash gradual shift from today to 100 renewable PtX by 2050

Gasolinekerosenediesel

Methanol

Methane

Hydrogen

0

10

20

30

40

50

60

70

80

90

100

2015 2020 2030 2040 2050

Shar

e r

en

wab

leGasolinekerosenedieselfrom crude oil

via PtL from renewableelectricity

Renewable share in the fuels (per MJ fuel)

8 PtL ∙ Power-to-Liquids PtX ∙ Power-to-Anything

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Definition of three distinct fuelpowertrain scenarios

PTL | Conservative scenario based on well established fuelspowertrainsinfrastructures incl ICE mild hybrids with power-to-liquids dominating all transportation modes high fuel demand

FVV | A mix of currently discussed options comprising ambitious ICE development progress incl ICE hybrids REEV BEV FCEV medium fuel demand

eMob | Derived from the study ldquoeMobil 2050rdquo [Oumlko-Institut 2015] with a dominance of electrified drivetrains low fuel demand

9

BEV ∙ Battery-electric vehicle eMob ∙ Electric mobility FCEV ∙ Fuel cell-electric vehicle FVV ∙ Research association PHEV ∙ Plug-in hybrid vehicle PTL ∙ Power-to-liquids REEV ∙ Range-extender vehicle

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Fuelpowertrain scenario | New car registrations

10

PTL CAR

[new-reg]

ICE Gasol Diesel

ICE Methane

Hybrid Gasol Diesel

Hybrid Methane

REEV Gasol Diesel

REEV Methane

BEV FCEV

2010 100 0 0 0 0 0 0 0 2020 80 0 20 0 0 0 0 0 2030 40 0 60 0 0 0 0 0 2040 10 0 90 0 0 0 0 0 2050 0 0 100 0 0 0 0 0

FVV CAR

[new-reg]

ICE Gasol Diesel

ICE Methane

Hybrid Gasol Diesel

Hybrid Methane

REEV Gasol Diesel

REEV Methane

BEV FCEV

2010 100 0 0 0 0 0 0 0

2020 36 5 45 2 6 0 4 1

2030 0 0 55 5 25 0 10 5

2040 0 0 37 2 45 0 16 9

2050 0 0 0 0 70 0 20 10

eMob CAR

[new-reg]

ICE Gasol Diesel

ICE Methane

Hybrid Gasol Diesel

Hybrid Methane

REEV Gasol Diesel

REEV Methane

BEV FCEV

2010 100 0 0 0 0 0 0 0 2020 86 5 3 0 3 0 3 0 2030 68 5 6 0 9 0 12 0 2040 0 0 10 0 17 0 72 0 2050 0 0 5 0 12 0 82 0

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

11

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Greenhouse gas emissions (example FVV scenario)

12

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Non-CO2-GHG vehicle

Methanol

H2

Electricity mix (train)

Electricity mix (04 kV)

CH4

DieselKerosene

Gasoline

Past Future

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Non-CO2-GHG vehicle

Methanol

H2

Electricity mix (train)

Electricity mix (04 kV)

CH4

DieselKerosene

Gasoline

Past Future

Greenhouse gas emissions | DE | All transport | laquoFVVraquo

13

by fuel

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future by mode

FVV + HIGH FVV + LOW

Climate impacts from high-altitude emissions (aviation) not included

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Final fuel demand electricity demand

14

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Fuel demand (TWha) | DE | All transport | laquoFVVraquo

Growth in HIGH transport demand overcompensates efficiency improvements

Relative importance of trucks and aviation in fuel demand increases

Thereof notably international aviation 15

0

100

200

300

400

500

600

700

800

900

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

Fin

al e

ne

rgy

use

(TW

hy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

FVV + HIGH FVV + LOW

0

100

200

300

400

500

600

700

800

900

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

Fin

al e

ne

rgy

use

(TW

hy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Total electricity demand in 2050 may be a factor 2 to 4 of todayrsquos electricity demand

All scenarios would likely require renewable energy imports

0

500

1000

1500

2000

2500

2015 2020 2025 2030 2035 2040 2045 2050

TWha

PTL + HIGH

PTL + LOW

FVV + HIGH

FVV + LOW

eMob + LOW

LBST

201

5-1

1-27

non-transport PtX (heat chemicals)

non-transport efficiency targets

521 TWhe net electricity consumption 2014

Electricity demand (TWhea) | DE | Today + transportation

16

1000 TWhea technical renewable electricity potential (this study)

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

hellip and cumulated investments until 2050

17

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Methodology

The cumulated investments consist of the following elements

ndash Renewable power plants

ndash PtX production plants

ndash Infrastructure for fuel transport amp distribution

Investments for end-of-life replacements are included in the cost model with a PtX plant lifetime of 25 years

Learning curves for electrolysers assumed ie the 1st PtX production plant is more expensive than the nth one

BEV home-charging assumed

Vehicle costs not included

18

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Germany

19 For comparison 2014 in Germany

Gross domestic product (GDP) = 2900 billion euroa

gt70 GW renewable power (38 GW wind onshore 3 GW wind offshore 39 GW PV)

0

200

400

600

800

1000

1200

1400

1600

PTL+HIGH PTL+LOW FVV+HIGH FVV+LOW eMob+LOW

billion euro

6200 H2 refuelling stations

4600 CH4 refueling stations

PtX production plants

360-900 GW RES power plants

PTL FVV eMob

LBST

201

5-12

-23

BEV Home charging

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

System integration of fluctating renewable power generation

20

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Efficiency vs renewables integration (Scaling indicativefor educational purpose)

Trade-off between efficiency and renewable power integration (ldquoSystemdienlichkeitrdquo)

Robust option Hydrogen

Sole option providing zero well-to-wheel emissions AND long-term energy storage Hydrogen

BEV battery-electric vehicle EV electric vehicle DSM demand-side management PTG power-to-gas PTL power-to-liquids

Electric powertrain Zero (local) emissions

demand flexible up to few hours

demand flexibility over hoursday(s) Energy storage over daysweeksmonths

demand flexibility add measures

LBST

201

5-12

-18

EV Overhead

line

BEV Charging

PTG Hydrogen

PTG Methane

PTL Gasoline Diesel

Efficiency Propulsion+Upstream

Storage density amp Demand flexibility

21

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

22

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Conclusions from the FVV Future Fuel study in a nutshell

Transportation demand development (pkm tkm) is strongest driver for fuelelectricity demand

PtX fuel costs could half between 2015 and 2050 PtL imports ~20 lower in cost Further cost reductions are subject to location-specific business cases

PtX costs are dominated by electricity costs which strongly depends on the fuel choice (H2 CH4 PTL) and associated plant efficiencies

Fuel distribution infrastructure costs are negligible compared to the upstream investments required for any of the scenarios analysed

Cumulated investments for Energiewende (energy transition) in the transportation sector seem manageable for any of the scenarios analysed

All scenarios analysed will probably exceed technicalacceptable renewable electricity potentials in Germany Import of PtL (if any) is likely for cost reasons

Transport must get more electric with regard to the fuel and the propulsion system

23 pkm ∙ person kilometre tkm ∙ tonne kilometre PtX ∙ Power-to-anything PtL ∙ Power-to-liquids

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Literature

P Schmidt W Zittel W Weindorf T Raksha (LBST)

Renewables in Transport 2050 ndash Empowering a sustainable mobility future with zero emission fuels from renewable electricity ndash Europe and Germany

Research Association for Combustion Engines eV (ed)

FVV-Report 1086 2016

Download

httpwwwfvv-netdeendownloadrenewables-in-transport-2050renewables-in-transport-2050html

24

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

LBST Experts

Patrick Schmidt (Dipl-Ing)

T +49 (0)89 608110-36 E PatrickSchmidtLBSTde

Dr Werner Zittel

Werner Weindorf (Dipl-Ing)

Tetyana Raksha (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH

Daimlerstr 15 85521 MunichOttobrunn Germany httpwwwlbstde

25

Acknowledgement

This study was financed by the FVV and supported by members of the FVV Working Group laquoFuture Fuelsraquo

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

ANNEX

26

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical renewable power generation potentials

27

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany and EU-28

Germany and the EU have (very) high technical renewable electricity potentials

ndash DE ~1000 TWha potential vs ~500 TWh net electricity consumption

ndash EU ~11000 TWha potential vs ~2800 TWh net electricity consumption

Only ~11 (DE) and ~6 (EU28) if this potentials are currently used for renewable power production

The limits to renewable power growth seem to be more of an acceptance issue than costs

[ISE 2015] states PV electricity production costs of 2-4 euroctkWh in Southern and Central Europe by 2050

Renewable power potentials assessed for solarthermal power plants could also be exploited with photovoltaics

28

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany (bars can be stacked)

29

0

500

1000

1500

2000

2500

3000

Windonshore Windoffshore PV Hydro Geothermal

Tech

nic

al p

ote

nti

al (

TWh

yr)

Net electricity consumption 2014 521 TWhyr

Lud

wig

-Bouml

lko

w-S

yste

mte

chn

ik G

mb

H (

LBST

) 2

01

5-1

0-0

5

Maximum

Minimum

Bandwidth for technical renewableenergy potentials

Assumption in this study

1000 TWhyr

Potential already exploited

Data [BMU 2010] [BMU 2012] [BWE 2013] [ISE 2015] [IWES_PV 2012] [IWES 2012] [Quaschning 2013] [TAB 2003] [UBA 2013] 2014 data [AGEB 2015] provisional as per 082015 2014 data [BDEW 2015] provisional as per 082015

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

CO2 avoidance costs

30

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

1800

2000G

aso

line

kero

sen

ed

iese

l

EE-P

tL m

eth

ano

l ro

ute

EE-P

tL F

T ro

ute

EE-P

tL S

OEC

met

han

ol r

ou

te

EE-P

tL S

OEC

-FT

rou

te

EE-C

H4

(C

NG

)

EE-C

H4

(LN

G)

EE-C

H4

(C

NG

) SO

EC

EE-C

H4

(LN

G)

SOEC

EE-C

GH

2 (

on

site

)

Elec

tric

ity

for

BEV

Liquid fuelsreference

Liquid fuels (PtL) Gaseous fuels (PtG) Electricity

FOSSIL RENEWABLE

GH

G a

void

ance

co

sts

(eurot

CO

2e

qu

ival

en

t)

2015 2020 2030 2040 2050

LBST

20

15

-12

-22

Benchmarks Fuels from

crude oil(0 eurot CO2)

-58-57

-67 -67

-58

-61

-62

-65-67

-23

CO2 avoidance costs well-to-tank [eurot CO2-eq] for PtX in DE

31

Least-cost short-term Electricity

Least-cost long-term Electricity and CGH2

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Target scenario ndash gradual shift from today to 100 renewable PtX by 2050

Gasolinekerosenediesel

Methanol

Methane

Hydrogen

0

10

20

30

40

50

60

70

80

90

100

2015 2020 2030 2040 2050

Shar

e r

en

wab

leGasolinekerosenedieselfrom crude oil

via PtL from renewableelectricity

Renewable share in the fuels (per MJ fuel)

8 PtL ∙ Power-to-Liquids PtX ∙ Power-to-Anything

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Definition of three distinct fuelpowertrain scenarios

PTL | Conservative scenario based on well established fuelspowertrainsinfrastructures incl ICE mild hybrids with power-to-liquids dominating all transportation modes high fuel demand

FVV | A mix of currently discussed options comprising ambitious ICE development progress incl ICE hybrids REEV BEV FCEV medium fuel demand

eMob | Derived from the study ldquoeMobil 2050rdquo [Oumlko-Institut 2015] with a dominance of electrified drivetrains low fuel demand

9

BEV ∙ Battery-electric vehicle eMob ∙ Electric mobility FCEV ∙ Fuel cell-electric vehicle FVV ∙ Research association PHEV ∙ Plug-in hybrid vehicle PTL ∙ Power-to-liquids REEV ∙ Range-extender vehicle

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Fuelpowertrain scenario | New car registrations

10

PTL CAR

[new-reg]

ICE Gasol Diesel

ICE Methane

Hybrid Gasol Diesel

Hybrid Methane

REEV Gasol Diesel

REEV Methane

BEV FCEV

2010 100 0 0 0 0 0 0 0 2020 80 0 20 0 0 0 0 0 2030 40 0 60 0 0 0 0 0 2040 10 0 90 0 0 0 0 0 2050 0 0 100 0 0 0 0 0

FVV CAR

[new-reg]

ICE Gasol Diesel

ICE Methane

Hybrid Gasol Diesel

Hybrid Methane

REEV Gasol Diesel

REEV Methane

BEV FCEV

2010 100 0 0 0 0 0 0 0

2020 36 5 45 2 6 0 4 1

2030 0 0 55 5 25 0 10 5

2040 0 0 37 2 45 0 16 9

2050 0 0 0 0 70 0 20 10

eMob CAR

[new-reg]

ICE Gasol Diesel

ICE Methane

Hybrid Gasol Diesel

Hybrid Methane

REEV Gasol Diesel

REEV Methane

BEV FCEV

2010 100 0 0 0 0 0 0 0 2020 86 5 3 0 3 0 3 0 2030 68 5 6 0 9 0 12 0 2040 0 0 10 0 17 0 72 0 2050 0 0 5 0 12 0 82 0

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

11

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Greenhouse gas emissions (example FVV scenario)

12

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Non-CO2-GHG vehicle

Methanol

H2

Electricity mix (train)

Electricity mix (04 kV)

CH4

DieselKerosene

Gasoline

Past Future

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Non-CO2-GHG vehicle

Methanol

H2

Electricity mix (train)

Electricity mix (04 kV)

CH4

DieselKerosene

Gasoline

Past Future

Greenhouse gas emissions | DE | All transport | laquoFVVraquo

13

by fuel

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future by mode

FVV + HIGH FVV + LOW

Climate impacts from high-altitude emissions (aviation) not included

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Final fuel demand electricity demand

14

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Fuel demand (TWha) | DE | All transport | laquoFVVraquo

Growth in HIGH transport demand overcompensates efficiency improvements

Relative importance of trucks and aviation in fuel demand increases

Thereof notably international aviation 15

0

100

200

300

400

500

600

700

800

900

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

Fin

al e

ne

rgy

use

(TW

hy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

FVV + HIGH FVV + LOW

0

100

200

300

400

500

600

700

800

900

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

Fin

al e

ne

rgy

use

(TW

hy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Total electricity demand in 2050 may be a factor 2 to 4 of todayrsquos electricity demand

All scenarios would likely require renewable energy imports

0

500

1000

1500

2000

2500

2015 2020 2025 2030 2035 2040 2045 2050

TWha

PTL + HIGH

PTL + LOW

FVV + HIGH

FVV + LOW

eMob + LOW

LBST

201

5-1

1-27

non-transport PtX (heat chemicals)

non-transport efficiency targets

521 TWhe net electricity consumption 2014

Electricity demand (TWhea) | DE | Today + transportation

16

1000 TWhea technical renewable electricity potential (this study)

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

hellip and cumulated investments until 2050

17

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Methodology

The cumulated investments consist of the following elements

ndash Renewable power plants

ndash PtX production plants

ndash Infrastructure for fuel transport amp distribution

Investments for end-of-life replacements are included in the cost model with a PtX plant lifetime of 25 years

Learning curves for electrolysers assumed ie the 1st PtX production plant is more expensive than the nth one

BEV home-charging assumed

Vehicle costs not included

18

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Germany

19 For comparison 2014 in Germany

Gross domestic product (GDP) = 2900 billion euroa

gt70 GW renewable power (38 GW wind onshore 3 GW wind offshore 39 GW PV)

0

200

400

600

800

1000

1200

1400

1600

PTL+HIGH PTL+LOW FVV+HIGH FVV+LOW eMob+LOW

billion euro

6200 H2 refuelling stations

4600 CH4 refueling stations

PtX production plants

360-900 GW RES power plants

PTL FVV eMob

LBST

201

5-12

-23

BEV Home charging

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

System integration of fluctating renewable power generation

20

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Efficiency vs renewables integration (Scaling indicativefor educational purpose)

Trade-off between efficiency and renewable power integration (ldquoSystemdienlichkeitrdquo)

Robust option Hydrogen

Sole option providing zero well-to-wheel emissions AND long-term energy storage Hydrogen

BEV battery-electric vehicle EV electric vehicle DSM demand-side management PTG power-to-gas PTL power-to-liquids

Electric powertrain Zero (local) emissions

demand flexible up to few hours

demand flexibility over hoursday(s) Energy storage over daysweeksmonths

demand flexibility add measures

LBST

201

5-12

-18

EV Overhead

line

BEV Charging

PTG Hydrogen

PTG Methane

PTL Gasoline Diesel

Efficiency Propulsion+Upstream

Storage density amp Demand flexibility

21

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

22

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Conclusions from the FVV Future Fuel study in a nutshell

Transportation demand development (pkm tkm) is strongest driver for fuelelectricity demand

PtX fuel costs could half between 2015 and 2050 PtL imports ~20 lower in cost Further cost reductions are subject to location-specific business cases

PtX costs are dominated by electricity costs which strongly depends on the fuel choice (H2 CH4 PTL) and associated plant efficiencies

Fuel distribution infrastructure costs are negligible compared to the upstream investments required for any of the scenarios analysed

Cumulated investments for Energiewende (energy transition) in the transportation sector seem manageable for any of the scenarios analysed

All scenarios analysed will probably exceed technicalacceptable renewable electricity potentials in Germany Import of PtL (if any) is likely for cost reasons

Transport must get more electric with regard to the fuel and the propulsion system

23 pkm ∙ person kilometre tkm ∙ tonne kilometre PtX ∙ Power-to-anything PtL ∙ Power-to-liquids

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Literature

P Schmidt W Zittel W Weindorf T Raksha (LBST)

Renewables in Transport 2050 ndash Empowering a sustainable mobility future with zero emission fuels from renewable electricity ndash Europe and Germany

Research Association for Combustion Engines eV (ed)

FVV-Report 1086 2016

Download

httpwwwfvv-netdeendownloadrenewables-in-transport-2050renewables-in-transport-2050html

24

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

LBST Experts

Patrick Schmidt (Dipl-Ing)

T +49 (0)89 608110-36 E PatrickSchmidtLBSTde

Dr Werner Zittel

Werner Weindorf (Dipl-Ing)

Tetyana Raksha (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH

Daimlerstr 15 85521 MunichOttobrunn Germany httpwwwlbstde

25

Acknowledgement

This study was financed by the FVV and supported by members of the FVV Working Group laquoFuture Fuelsraquo

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

ANNEX

26

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical renewable power generation potentials

27

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany and EU-28

Germany and the EU have (very) high technical renewable electricity potentials

ndash DE ~1000 TWha potential vs ~500 TWh net electricity consumption

ndash EU ~11000 TWha potential vs ~2800 TWh net electricity consumption

Only ~11 (DE) and ~6 (EU28) if this potentials are currently used for renewable power production

The limits to renewable power growth seem to be more of an acceptance issue than costs

[ISE 2015] states PV electricity production costs of 2-4 euroctkWh in Southern and Central Europe by 2050

Renewable power potentials assessed for solarthermal power plants could also be exploited with photovoltaics

28

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany (bars can be stacked)

29

0

500

1000

1500

2000

2500

3000

Windonshore Windoffshore PV Hydro Geothermal

Tech

nic

al p

ote

nti

al (

TWh

yr)

Net electricity consumption 2014 521 TWhyr

Lud

wig

-Bouml

lko

w-S

yste

mte

chn

ik G

mb

H (

LBST

) 2

01

5-1

0-0

5

Maximum

Minimum

Bandwidth for technical renewableenergy potentials

Assumption in this study

1000 TWhyr

Potential already exploited

Data [BMU 2010] [BMU 2012] [BWE 2013] [ISE 2015] [IWES_PV 2012] [IWES 2012] [Quaschning 2013] [TAB 2003] [UBA 2013] 2014 data [AGEB 2015] provisional as per 082015 2014 data [BDEW 2015] provisional as per 082015

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

CO2 avoidance costs

30

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

1800

2000G

aso

line

kero

sen

ed

iese

l

EE-P

tL m

eth

ano

l ro

ute

EE-P

tL F

T ro

ute

EE-P

tL S

OEC

met

han

ol r

ou

te

EE-P

tL S

OEC

-FT

rou

te

EE-C

H4

(C

NG

)

EE-C

H4

(LN

G)

EE-C

H4

(C

NG

) SO

EC

EE-C

H4

(LN

G)

SOEC

EE-C

GH

2 (

on

site

)

Elec

tric

ity

for

BEV

Liquid fuelsreference

Liquid fuels (PtL) Gaseous fuels (PtG) Electricity

FOSSIL RENEWABLE

GH

G a

void

ance

co

sts

(eurot

CO

2e

qu

ival

en

t)

2015 2020 2030 2040 2050

LBST

20

15

-12

-22

Benchmarks Fuels from

crude oil(0 eurot CO2)

-58-57

-67 -67

-58

-61

-62

-65-67

-23

CO2 avoidance costs well-to-tank [eurot CO2-eq] for PtX in DE

31

Least-cost short-term Electricity

Least-cost long-term Electricity and CGH2

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Definition of three distinct fuelpowertrain scenarios

PTL | Conservative scenario based on well established fuelspowertrainsinfrastructures incl ICE mild hybrids with power-to-liquids dominating all transportation modes high fuel demand

FVV | A mix of currently discussed options comprising ambitious ICE development progress incl ICE hybrids REEV BEV FCEV medium fuel demand

eMob | Derived from the study ldquoeMobil 2050rdquo [Oumlko-Institut 2015] with a dominance of electrified drivetrains low fuel demand

9

BEV ∙ Battery-electric vehicle eMob ∙ Electric mobility FCEV ∙ Fuel cell-electric vehicle FVV ∙ Research association PHEV ∙ Plug-in hybrid vehicle PTL ∙ Power-to-liquids REEV ∙ Range-extender vehicle

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Fuelpowertrain scenario | New car registrations

10

PTL CAR

[new-reg]

ICE Gasol Diesel

ICE Methane

Hybrid Gasol Diesel

Hybrid Methane

REEV Gasol Diesel

REEV Methane

BEV FCEV

2010 100 0 0 0 0 0 0 0 2020 80 0 20 0 0 0 0 0 2030 40 0 60 0 0 0 0 0 2040 10 0 90 0 0 0 0 0 2050 0 0 100 0 0 0 0 0

FVV CAR

[new-reg]

ICE Gasol Diesel

ICE Methane

Hybrid Gasol Diesel

Hybrid Methane

REEV Gasol Diesel

REEV Methane

BEV FCEV

2010 100 0 0 0 0 0 0 0

2020 36 5 45 2 6 0 4 1

2030 0 0 55 5 25 0 10 5

2040 0 0 37 2 45 0 16 9

2050 0 0 0 0 70 0 20 10

eMob CAR

[new-reg]

ICE Gasol Diesel

ICE Methane

Hybrid Gasol Diesel

Hybrid Methane

REEV Gasol Diesel

REEV Methane

BEV FCEV

2010 100 0 0 0 0 0 0 0 2020 86 5 3 0 3 0 3 0 2030 68 5 6 0 9 0 12 0 2040 0 0 10 0 17 0 72 0 2050 0 0 5 0 12 0 82 0

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

11

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Greenhouse gas emissions (example FVV scenario)

12

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Non-CO2-GHG vehicle

Methanol

H2

Electricity mix (train)

Electricity mix (04 kV)

CH4

DieselKerosene

Gasoline

Past Future

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Non-CO2-GHG vehicle

Methanol

H2

Electricity mix (train)

Electricity mix (04 kV)

CH4

DieselKerosene

Gasoline

Past Future

Greenhouse gas emissions | DE | All transport | laquoFVVraquo

13

by fuel

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future by mode

FVV + HIGH FVV + LOW

Climate impacts from high-altitude emissions (aviation) not included

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Final fuel demand electricity demand

14

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Fuel demand (TWha) | DE | All transport | laquoFVVraquo

Growth in HIGH transport demand overcompensates efficiency improvements

Relative importance of trucks and aviation in fuel demand increases

Thereof notably international aviation 15

0

100

200

300

400

500

600

700

800

900

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

Fin

al e

ne

rgy

use

(TW

hy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

FVV + HIGH FVV + LOW

0

100

200

300

400

500

600

700

800

900

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

Fin

al e

ne

rgy

use

(TW

hy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Total electricity demand in 2050 may be a factor 2 to 4 of todayrsquos electricity demand

All scenarios would likely require renewable energy imports

0

500

1000

1500

2000

2500

2015 2020 2025 2030 2035 2040 2045 2050

TWha

PTL + HIGH

PTL + LOW

FVV + HIGH

FVV + LOW

eMob + LOW

LBST

201

5-1

1-27

non-transport PtX (heat chemicals)

non-transport efficiency targets

521 TWhe net electricity consumption 2014

Electricity demand (TWhea) | DE | Today + transportation

16

1000 TWhea technical renewable electricity potential (this study)

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

hellip and cumulated investments until 2050

17

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Methodology

The cumulated investments consist of the following elements

ndash Renewable power plants

ndash PtX production plants

ndash Infrastructure for fuel transport amp distribution

Investments for end-of-life replacements are included in the cost model with a PtX plant lifetime of 25 years

Learning curves for electrolysers assumed ie the 1st PtX production plant is more expensive than the nth one

BEV home-charging assumed

Vehicle costs not included

18

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Germany

19 For comparison 2014 in Germany

Gross domestic product (GDP) = 2900 billion euroa

gt70 GW renewable power (38 GW wind onshore 3 GW wind offshore 39 GW PV)

0

200

400

600

800

1000

1200

1400

1600

PTL+HIGH PTL+LOW FVV+HIGH FVV+LOW eMob+LOW

billion euro

6200 H2 refuelling stations

4600 CH4 refueling stations

PtX production plants

360-900 GW RES power plants

PTL FVV eMob

LBST

201

5-12

-23

BEV Home charging

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

System integration of fluctating renewable power generation

20

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Efficiency vs renewables integration (Scaling indicativefor educational purpose)

Trade-off between efficiency and renewable power integration (ldquoSystemdienlichkeitrdquo)

Robust option Hydrogen

Sole option providing zero well-to-wheel emissions AND long-term energy storage Hydrogen

BEV battery-electric vehicle EV electric vehicle DSM demand-side management PTG power-to-gas PTL power-to-liquids

Electric powertrain Zero (local) emissions

demand flexible up to few hours

demand flexibility over hoursday(s) Energy storage over daysweeksmonths

demand flexibility add measures

LBST

201

5-12

-18

EV Overhead

line

BEV Charging

PTG Hydrogen

PTG Methane

PTL Gasoline Diesel

Efficiency Propulsion+Upstream

Storage density amp Demand flexibility

21

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

22

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Conclusions from the FVV Future Fuel study in a nutshell

Transportation demand development (pkm tkm) is strongest driver for fuelelectricity demand

PtX fuel costs could half between 2015 and 2050 PtL imports ~20 lower in cost Further cost reductions are subject to location-specific business cases

PtX costs are dominated by electricity costs which strongly depends on the fuel choice (H2 CH4 PTL) and associated plant efficiencies

Fuel distribution infrastructure costs are negligible compared to the upstream investments required for any of the scenarios analysed

Cumulated investments for Energiewende (energy transition) in the transportation sector seem manageable for any of the scenarios analysed

All scenarios analysed will probably exceed technicalacceptable renewable electricity potentials in Germany Import of PtL (if any) is likely for cost reasons

Transport must get more electric with regard to the fuel and the propulsion system

23 pkm ∙ person kilometre tkm ∙ tonne kilometre PtX ∙ Power-to-anything PtL ∙ Power-to-liquids

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Literature

P Schmidt W Zittel W Weindorf T Raksha (LBST)

Renewables in Transport 2050 ndash Empowering a sustainable mobility future with zero emission fuels from renewable electricity ndash Europe and Germany

Research Association for Combustion Engines eV (ed)

FVV-Report 1086 2016

Download

httpwwwfvv-netdeendownloadrenewables-in-transport-2050renewables-in-transport-2050html

24

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

LBST Experts

Patrick Schmidt (Dipl-Ing)

T +49 (0)89 608110-36 E PatrickSchmidtLBSTde

Dr Werner Zittel

Werner Weindorf (Dipl-Ing)

Tetyana Raksha (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH

Daimlerstr 15 85521 MunichOttobrunn Germany httpwwwlbstde

25

Acknowledgement

This study was financed by the FVV and supported by members of the FVV Working Group laquoFuture Fuelsraquo

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

ANNEX

26

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical renewable power generation potentials

27

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany and EU-28

Germany and the EU have (very) high technical renewable electricity potentials

ndash DE ~1000 TWha potential vs ~500 TWh net electricity consumption

ndash EU ~11000 TWha potential vs ~2800 TWh net electricity consumption

Only ~11 (DE) and ~6 (EU28) if this potentials are currently used for renewable power production

The limits to renewable power growth seem to be more of an acceptance issue than costs

[ISE 2015] states PV electricity production costs of 2-4 euroctkWh in Southern and Central Europe by 2050

Renewable power potentials assessed for solarthermal power plants could also be exploited with photovoltaics

28

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany (bars can be stacked)

29

0

500

1000

1500

2000

2500

3000

Windonshore Windoffshore PV Hydro Geothermal

Tech

nic

al p

ote

nti

al (

TWh

yr)

Net electricity consumption 2014 521 TWhyr

Lud

wig

-Bouml

lko

w-S

yste

mte

chn

ik G

mb

H (

LBST

) 2

01

5-1

0-0

5

Maximum

Minimum

Bandwidth for technical renewableenergy potentials

Assumption in this study

1000 TWhyr

Potential already exploited

Data [BMU 2010] [BMU 2012] [BWE 2013] [ISE 2015] [IWES_PV 2012] [IWES 2012] [Quaschning 2013] [TAB 2003] [UBA 2013] 2014 data [AGEB 2015] provisional as per 082015 2014 data [BDEW 2015] provisional as per 082015

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

CO2 avoidance costs

30

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

1800

2000G

aso

line

kero

sen

ed

iese

l

EE-P

tL m

eth

ano

l ro

ute

EE-P

tL F

T ro

ute

EE-P

tL S

OEC

met

han

ol r

ou

te

EE-P

tL S

OEC

-FT

rou

te

EE-C

H4

(C

NG

)

EE-C

H4

(LN

G)

EE-C

H4

(C

NG

) SO

EC

EE-C

H4

(LN

G)

SOEC

EE-C

GH

2 (

on

site

)

Elec

tric

ity

for

BEV

Liquid fuelsreference

Liquid fuels (PtL) Gaseous fuels (PtG) Electricity

FOSSIL RENEWABLE

GH

G a

void

ance

co

sts

(eurot

CO

2e

qu

ival

en

t)

2015 2020 2030 2040 2050

LBST

20

15

-12

-22

Benchmarks Fuels from

crude oil(0 eurot CO2)

-58-57

-67 -67

-58

-61

-62

-65-67

-23

CO2 avoidance costs well-to-tank [eurot CO2-eq] for PtX in DE

31

Least-cost short-term Electricity

Least-cost long-term Electricity and CGH2

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Fuelpowertrain scenario | New car registrations

10

PTL CAR

[new-reg]

ICE Gasol Diesel

ICE Methane

Hybrid Gasol Diesel

Hybrid Methane

REEV Gasol Diesel

REEV Methane

BEV FCEV

2010 100 0 0 0 0 0 0 0 2020 80 0 20 0 0 0 0 0 2030 40 0 60 0 0 0 0 0 2040 10 0 90 0 0 0 0 0 2050 0 0 100 0 0 0 0 0

FVV CAR

[new-reg]

ICE Gasol Diesel

ICE Methane

Hybrid Gasol Diesel

Hybrid Methane

REEV Gasol Diesel

REEV Methane

BEV FCEV

2010 100 0 0 0 0 0 0 0

2020 36 5 45 2 6 0 4 1

2030 0 0 55 5 25 0 10 5

2040 0 0 37 2 45 0 16 9

2050 0 0 0 0 70 0 20 10

eMob CAR

[new-reg]

ICE Gasol Diesel

ICE Methane

Hybrid Gasol Diesel

Hybrid Methane

REEV Gasol Diesel

REEV Methane

BEV FCEV

2010 100 0 0 0 0 0 0 0 2020 86 5 3 0 3 0 3 0 2030 68 5 6 0 9 0 12 0 2040 0 0 10 0 17 0 72 0 2050 0 0 5 0 12 0 82 0

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

11

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Greenhouse gas emissions (example FVV scenario)

12

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Non-CO2-GHG vehicle

Methanol

H2

Electricity mix (train)

Electricity mix (04 kV)

CH4

DieselKerosene

Gasoline

Past Future

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Non-CO2-GHG vehicle

Methanol

H2

Electricity mix (train)

Electricity mix (04 kV)

CH4

DieselKerosene

Gasoline

Past Future

Greenhouse gas emissions | DE | All transport | laquoFVVraquo

13

by fuel

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future by mode

FVV + HIGH FVV + LOW

Climate impacts from high-altitude emissions (aviation) not included

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Final fuel demand electricity demand

14

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Fuel demand (TWha) | DE | All transport | laquoFVVraquo

Growth in HIGH transport demand overcompensates efficiency improvements

Relative importance of trucks and aviation in fuel demand increases

Thereof notably international aviation 15

0

100

200

300

400

500

600

700

800

900

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

Fin

al e

ne

rgy

use

(TW

hy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

FVV + HIGH FVV + LOW

0

100

200

300

400

500

600

700

800

900

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

Fin

al e

ne

rgy

use

(TW

hy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Total electricity demand in 2050 may be a factor 2 to 4 of todayrsquos electricity demand

All scenarios would likely require renewable energy imports

0

500

1000

1500

2000

2500

2015 2020 2025 2030 2035 2040 2045 2050

TWha

PTL + HIGH

PTL + LOW

FVV + HIGH

FVV + LOW

eMob + LOW

LBST

201

5-1

1-27

non-transport PtX (heat chemicals)

non-transport efficiency targets

521 TWhe net electricity consumption 2014

Electricity demand (TWhea) | DE | Today + transportation

16

1000 TWhea technical renewable electricity potential (this study)

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

hellip and cumulated investments until 2050

17

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Methodology

The cumulated investments consist of the following elements

ndash Renewable power plants

ndash PtX production plants

ndash Infrastructure for fuel transport amp distribution

Investments for end-of-life replacements are included in the cost model with a PtX plant lifetime of 25 years

Learning curves for electrolysers assumed ie the 1st PtX production plant is more expensive than the nth one

BEV home-charging assumed

Vehicle costs not included

18

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Germany

19 For comparison 2014 in Germany

Gross domestic product (GDP) = 2900 billion euroa

gt70 GW renewable power (38 GW wind onshore 3 GW wind offshore 39 GW PV)

0

200

400

600

800

1000

1200

1400

1600

PTL+HIGH PTL+LOW FVV+HIGH FVV+LOW eMob+LOW

billion euro

6200 H2 refuelling stations

4600 CH4 refueling stations

PtX production plants

360-900 GW RES power plants

PTL FVV eMob

LBST

201

5-12

-23

BEV Home charging

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

System integration of fluctating renewable power generation

20

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Efficiency vs renewables integration (Scaling indicativefor educational purpose)

Trade-off between efficiency and renewable power integration (ldquoSystemdienlichkeitrdquo)

Robust option Hydrogen

Sole option providing zero well-to-wheel emissions AND long-term energy storage Hydrogen

BEV battery-electric vehicle EV electric vehicle DSM demand-side management PTG power-to-gas PTL power-to-liquids

Electric powertrain Zero (local) emissions

demand flexible up to few hours

demand flexibility over hoursday(s) Energy storage over daysweeksmonths

demand flexibility add measures

LBST

201

5-12

-18

EV Overhead

line

BEV Charging

PTG Hydrogen

PTG Methane

PTL Gasoline Diesel

Efficiency Propulsion+Upstream

Storage density amp Demand flexibility

21

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

22

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Conclusions from the FVV Future Fuel study in a nutshell

Transportation demand development (pkm tkm) is strongest driver for fuelelectricity demand

PtX fuel costs could half between 2015 and 2050 PtL imports ~20 lower in cost Further cost reductions are subject to location-specific business cases

PtX costs are dominated by electricity costs which strongly depends on the fuel choice (H2 CH4 PTL) and associated plant efficiencies

Fuel distribution infrastructure costs are negligible compared to the upstream investments required for any of the scenarios analysed

Cumulated investments for Energiewende (energy transition) in the transportation sector seem manageable for any of the scenarios analysed

All scenarios analysed will probably exceed technicalacceptable renewable electricity potentials in Germany Import of PtL (if any) is likely for cost reasons

Transport must get more electric with regard to the fuel and the propulsion system

23 pkm ∙ person kilometre tkm ∙ tonne kilometre PtX ∙ Power-to-anything PtL ∙ Power-to-liquids

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Literature

P Schmidt W Zittel W Weindorf T Raksha (LBST)

Renewables in Transport 2050 ndash Empowering a sustainable mobility future with zero emission fuels from renewable electricity ndash Europe and Germany

Research Association for Combustion Engines eV (ed)

FVV-Report 1086 2016

Download

httpwwwfvv-netdeendownloadrenewables-in-transport-2050renewables-in-transport-2050html

24

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

LBST Experts

Patrick Schmidt (Dipl-Ing)

T +49 (0)89 608110-36 E PatrickSchmidtLBSTde

Dr Werner Zittel

Werner Weindorf (Dipl-Ing)

Tetyana Raksha (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH

Daimlerstr 15 85521 MunichOttobrunn Germany httpwwwlbstde

25

Acknowledgement

This study was financed by the FVV and supported by members of the FVV Working Group laquoFuture Fuelsraquo

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

ANNEX

26

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical renewable power generation potentials

27

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany and EU-28

Germany and the EU have (very) high technical renewable electricity potentials

ndash DE ~1000 TWha potential vs ~500 TWh net electricity consumption

ndash EU ~11000 TWha potential vs ~2800 TWh net electricity consumption

Only ~11 (DE) and ~6 (EU28) if this potentials are currently used for renewable power production

The limits to renewable power growth seem to be more of an acceptance issue than costs

[ISE 2015] states PV electricity production costs of 2-4 euroctkWh in Southern and Central Europe by 2050

Renewable power potentials assessed for solarthermal power plants could also be exploited with photovoltaics

28

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany (bars can be stacked)

29

0

500

1000

1500

2000

2500

3000

Windonshore Windoffshore PV Hydro Geothermal

Tech

nic

al p

ote

nti

al (

TWh

yr)

Net electricity consumption 2014 521 TWhyr

Lud

wig

-Bouml

lko

w-S

yste

mte

chn

ik G

mb

H (

LBST

) 2

01

5-1

0-0

5

Maximum

Minimum

Bandwidth for technical renewableenergy potentials

Assumption in this study

1000 TWhyr

Potential already exploited

Data [BMU 2010] [BMU 2012] [BWE 2013] [ISE 2015] [IWES_PV 2012] [IWES 2012] [Quaschning 2013] [TAB 2003] [UBA 2013] 2014 data [AGEB 2015] provisional as per 082015 2014 data [BDEW 2015] provisional as per 082015

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

CO2 avoidance costs

30

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

1800

2000G

aso

line

kero

sen

ed

iese

l

EE-P

tL m

eth

ano

l ro

ute

EE-P

tL F

T ro

ute

EE-P

tL S

OEC

met

han

ol r

ou

te

EE-P

tL S

OEC

-FT

rou

te

EE-C

H4

(C

NG

)

EE-C

H4

(LN

G)

EE-C

H4

(C

NG

) SO

EC

EE-C

H4

(LN

G)

SOEC

EE-C

GH

2 (

on

site

)

Elec

tric

ity

for

BEV

Liquid fuelsreference

Liquid fuels (PtL) Gaseous fuels (PtG) Electricity

FOSSIL RENEWABLE

GH

G a

void

ance

co

sts

(eurot

CO

2e

qu

ival

en

t)

2015 2020 2030 2040 2050

LBST

20

15

-12

-22

Benchmarks Fuels from

crude oil(0 eurot CO2)

-58-57

-67 -67

-58

-61

-62

-65-67

-23

CO2 avoidance costs well-to-tank [eurot CO2-eq] for PtX in DE

31

Least-cost short-term Electricity

Least-cost long-term Electricity and CGH2

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

11

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Greenhouse gas emissions (example FVV scenario)

12

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Non-CO2-GHG vehicle

Methanol

H2

Electricity mix (train)

Electricity mix (04 kV)

CH4

DieselKerosene

Gasoline

Past Future

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Non-CO2-GHG vehicle

Methanol

H2

Electricity mix (train)

Electricity mix (04 kV)

CH4

DieselKerosene

Gasoline

Past Future

Greenhouse gas emissions | DE | All transport | laquoFVVraquo

13

by fuel

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future by mode

FVV + HIGH FVV + LOW

Climate impacts from high-altitude emissions (aviation) not included

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Final fuel demand electricity demand

14

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Fuel demand (TWha) | DE | All transport | laquoFVVraquo

Growth in HIGH transport demand overcompensates efficiency improvements

Relative importance of trucks and aviation in fuel demand increases

Thereof notably international aviation 15

0

100

200

300

400

500

600

700

800

900

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

Fin

al e

ne

rgy

use

(TW

hy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

FVV + HIGH FVV + LOW

0

100

200

300

400

500

600

700

800

900

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

Fin

al e

ne

rgy

use

(TW

hy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Total electricity demand in 2050 may be a factor 2 to 4 of todayrsquos electricity demand

All scenarios would likely require renewable energy imports

0

500

1000

1500

2000

2500

2015 2020 2025 2030 2035 2040 2045 2050

TWha

PTL + HIGH

PTL + LOW

FVV + HIGH

FVV + LOW

eMob + LOW

LBST

201

5-1

1-27

non-transport PtX (heat chemicals)

non-transport efficiency targets

521 TWhe net electricity consumption 2014

Electricity demand (TWhea) | DE | Today + transportation

16

1000 TWhea technical renewable electricity potential (this study)

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

hellip and cumulated investments until 2050

17

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Methodology

The cumulated investments consist of the following elements

ndash Renewable power plants

ndash PtX production plants

ndash Infrastructure for fuel transport amp distribution

Investments for end-of-life replacements are included in the cost model with a PtX plant lifetime of 25 years

Learning curves for electrolysers assumed ie the 1st PtX production plant is more expensive than the nth one

BEV home-charging assumed

Vehicle costs not included

18

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Germany

19 For comparison 2014 in Germany

Gross domestic product (GDP) = 2900 billion euroa

gt70 GW renewable power (38 GW wind onshore 3 GW wind offshore 39 GW PV)

0

200

400

600

800

1000

1200

1400

1600

PTL+HIGH PTL+LOW FVV+HIGH FVV+LOW eMob+LOW

billion euro

6200 H2 refuelling stations

4600 CH4 refueling stations

PtX production plants

360-900 GW RES power plants

PTL FVV eMob

LBST

201

5-12

-23

BEV Home charging

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

System integration of fluctating renewable power generation

20

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Efficiency vs renewables integration (Scaling indicativefor educational purpose)

Trade-off between efficiency and renewable power integration (ldquoSystemdienlichkeitrdquo)

Robust option Hydrogen

Sole option providing zero well-to-wheel emissions AND long-term energy storage Hydrogen

BEV battery-electric vehicle EV electric vehicle DSM demand-side management PTG power-to-gas PTL power-to-liquids

Electric powertrain Zero (local) emissions

demand flexible up to few hours

demand flexibility over hoursday(s) Energy storage over daysweeksmonths

demand flexibility add measures

LBST

201

5-12

-18

EV Overhead

line

BEV Charging

PTG Hydrogen

PTG Methane

PTL Gasoline Diesel

Efficiency Propulsion+Upstream

Storage density amp Demand flexibility

21

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

22

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Conclusions from the FVV Future Fuel study in a nutshell

Transportation demand development (pkm tkm) is strongest driver for fuelelectricity demand

PtX fuel costs could half between 2015 and 2050 PtL imports ~20 lower in cost Further cost reductions are subject to location-specific business cases

PtX costs are dominated by electricity costs which strongly depends on the fuel choice (H2 CH4 PTL) and associated plant efficiencies

Fuel distribution infrastructure costs are negligible compared to the upstream investments required for any of the scenarios analysed

Cumulated investments for Energiewende (energy transition) in the transportation sector seem manageable for any of the scenarios analysed

All scenarios analysed will probably exceed technicalacceptable renewable electricity potentials in Germany Import of PtL (if any) is likely for cost reasons

Transport must get more electric with regard to the fuel and the propulsion system

23 pkm ∙ person kilometre tkm ∙ tonne kilometre PtX ∙ Power-to-anything PtL ∙ Power-to-liquids

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Literature

P Schmidt W Zittel W Weindorf T Raksha (LBST)

Renewables in Transport 2050 ndash Empowering a sustainable mobility future with zero emission fuels from renewable electricity ndash Europe and Germany

Research Association for Combustion Engines eV (ed)

FVV-Report 1086 2016

Download

httpwwwfvv-netdeendownloadrenewables-in-transport-2050renewables-in-transport-2050html

24

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

LBST Experts

Patrick Schmidt (Dipl-Ing)

T +49 (0)89 608110-36 E PatrickSchmidtLBSTde

Dr Werner Zittel

Werner Weindorf (Dipl-Ing)

Tetyana Raksha (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH

Daimlerstr 15 85521 MunichOttobrunn Germany httpwwwlbstde

25

Acknowledgement

This study was financed by the FVV and supported by members of the FVV Working Group laquoFuture Fuelsraquo

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

ANNEX

26

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical renewable power generation potentials

27

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany and EU-28

Germany and the EU have (very) high technical renewable electricity potentials

ndash DE ~1000 TWha potential vs ~500 TWh net electricity consumption

ndash EU ~11000 TWha potential vs ~2800 TWh net electricity consumption

Only ~11 (DE) and ~6 (EU28) if this potentials are currently used for renewable power production

The limits to renewable power growth seem to be more of an acceptance issue than costs

[ISE 2015] states PV electricity production costs of 2-4 euroctkWh in Southern and Central Europe by 2050

Renewable power potentials assessed for solarthermal power plants could also be exploited with photovoltaics

28

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany (bars can be stacked)

29

0

500

1000

1500

2000

2500

3000

Windonshore Windoffshore PV Hydro Geothermal

Tech

nic

al p

ote

nti

al (

TWh

yr)

Net electricity consumption 2014 521 TWhyr

Lud

wig

-Bouml

lko

w-S

yste

mte

chn

ik G

mb

H (

LBST

) 2

01

5-1

0-0

5

Maximum

Minimum

Bandwidth for technical renewableenergy potentials

Assumption in this study

1000 TWhyr

Potential already exploited

Data [BMU 2010] [BMU 2012] [BWE 2013] [ISE 2015] [IWES_PV 2012] [IWES 2012] [Quaschning 2013] [TAB 2003] [UBA 2013] 2014 data [AGEB 2015] provisional as per 082015 2014 data [BDEW 2015] provisional as per 082015

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

CO2 avoidance costs

30

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

1800

2000G

aso

line

kero

sen

ed

iese

l

EE-P

tL m

eth

ano

l ro

ute

EE-P

tL F

T ro

ute

EE-P

tL S

OEC

met

han

ol r

ou

te

EE-P

tL S

OEC

-FT

rou

te

EE-C

H4

(C

NG

)

EE-C

H4

(LN

G)

EE-C

H4

(C

NG

) SO

EC

EE-C

H4

(LN

G)

SOEC

EE-C

GH

2 (

on

site

)

Elec

tric

ity

for

BEV

Liquid fuelsreference

Liquid fuels (PtL) Gaseous fuels (PtG) Electricity

FOSSIL RENEWABLE

GH

G a

void

ance

co

sts

(eurot

CO

2e

qu

ival

en

t)

2015 2020 2030 2040 2050

LBST

20

15

-12

-22

Benchmarks Fuels from

crude oil(0 eurot CO2)

-58-57

-67 -67

-58

-61

-62

-65-67

-23

CO2 avoidance costs well-to-tank [eurot CO2-eq] for PtX in DE

31

Least-cost short-term Electricity

Least-cost long-term Electricity and CGH2

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Greenhouse gas emissions (example FVV scenario)

12

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Non-CO2-GHG vehicle

Methanol

H2

Electricity mix (train)

Electricity mix (04 kV)

CH4

DieselKerosene

Gasoline

Past Future

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Non-CO2-GHG vehicle

Methanol

H2

Electricity mix (train)

Electricity mix (04 kV)

CH4

DieselKerosene

Gasoline

Past Future

Greenhouse gas emissions | DE | All transport | laquoFVVraquo

13

by fuel

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future by mode

FVV + HIGH FVV + LOW

Climate impacts from high-altitude emissions (aviation) not included

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Final fuel demand electricity demand

14

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Fuel demand (TWha) | DE | All transport | laquoFVVraquo

Growth in HIGH transport demand overcompensates efficiency improvements

Relative importance of trucks and aviation in fuel demand increases

Thereof notably international aviation 15

0

100

200

300

400

500

600

700

800

900

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

Fin

al e

ne

rgy

use

(TW

hy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

FVV + HIGH FVV + LOW

0

100

200

300

400

500

600

700

800

900

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

Fin

al e

ne

rgy

use

(TW

hy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Total electricity demand in 2050 may be a factor 2 to 4 of todayrsquos electricity demand

All scenarios would likely require renewable energy imports

0

500

1000

1500

2000

2500

2015 2020 2025 2030 2035 2040 2045 2050

TWha

PTL + HIGH

PTL + LOW

FVV + HIGH

FVV + LOW

eMob + LOW

LBST

201

5-1

1-27

non-transport PtX (heat chemicals)

non-transport efficiency targets

521 TWhe net electricity consumption 2014

Electricity demand (TWhea) | DE | Today + transportation

16

1000 TWhea technical renewable electricity potential (this study)

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

hellip and cumulated investments until 2050

17

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Methodology

The cumulated investments consist of the following elements

ndash Renewable power plants

ndash PtX production plants

ndash Infrastructure for fuel transport amp distribution

Investments for end-of-life replacements are included in the cost model with a PtX plant lifetime of 25 years

Learning curves for electrolysers assumed ie the 1st PtX production plant is more expensive than the nth one

BEV home-charging assumed

Vehicle costs not included

18

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Germany

19 For comparison 2014 in Germany

Gross domestic product (GDP) = 2900 billion euroa

gt70 GW renewable power (38 GW wind onshore 3 GW wind offshore 39 GW PV)

0

200

400

600

800

1000

1200

1400

1600

PTL+HIGH PTL+LOW FVV+HIGH FVV+LOW eMob+LOW

billion euro

6200 H2 refuelling stations

4600 CH4 refueling stations

PtX production plants

360-900 GW RES power plants

PTL FVV eMob

LBST

201

5-12

-23

BEV Home charging

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

System integration of fluctating renewable power generation

20

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Efficiency vs renewables integration (Scaling indicativefor educational purpose)

Trade-off between efficiency and renewable power integration (ldquoSystemdienlichkeitrdquo)

Robust option Hydrogen

Sole option providing zero well-to-wheel emissions AND long-term energy storage Hydrogen

BEV battery-electric vehicle EV electric vehicle DSM demand-side management PTG power-to-gas PTL power-to-liquids

Electric powertrain Zero (local) emissions

demand flexible up to few hours

demand flexibility over hoursday(s) Energy storage over daysweeksmonths

demand flexibility add measures

LBST

201

5-12

-18

EV Overhead

line

BEV Charging

PTG Hydrogen

PTG Methane

PTL Gasoline Diesel

Efficiency Propulsion+Upstream

Storage density amp Demand flexibility

21

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

22

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Conclusions from the FVV Future Fuel study in a nutshell

Transportation demand development (pkm tkm) is strongest driver for fuelelectricity demand

PtX fuel costs could half between 2015 and 2050 PtL imports ~20 lower in cost Further cost reductions are subject to location-specific business cases

PtX costs are dominated by electricity costs which strongly depends on the fuel choice (H2 CH4 PTL) and associated plant efficiencies

Fuel distribution infrastructure costs are negligible compared to the upstream investments required for any of the scenarios analysed

Cumulated investments for Energiewende (energy transition) in the transportation sector seem manageable for any of the scenarios analysed

All scenarios analysed will probably exceed technicalacceptable renewable electricity potentials in Germany Import of PtL (if any) is likely for cost reasons

Transport must get more electric with regard to the fuel and the propulsion system

23 pkm ∙ person kilometre tkm ∙ tonne kilometre PtX ∙ Power-to-anything PtL ∙ Power-to-liquids

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Literature

P Schmidt W Zittel W Weindorf T Raksha (LBST)

Renewables in Transport 2050 ndash Empowering a sustainable mobility future with zero emission fuels from renewable electricity ndash Europe and Germany

Research Association for Combustion Engines eV (ed)

FVV-Report 1086 2016

Download

httpwwwfvv-netdeendownloadrenewables-in-transport-2050renewables-in-transport-2050html

24

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

LBST Experts

Patrick Schmidt (Dipl-Ing)

T +49 (0)89 608110-36 E PatrickSchmidtLBSTde

Dr Werner Zittel

Werner Weindorf (Dipl-Ing)

Tetyana Raksha (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH

Daimlerstr 15 85521 MunichOttobrunn Germany httpwwwlbstde

25

Acknowledgement

This study was financed by the FVV and supported by members of the FVV Working Group laquoFuture Fuelsraquo

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

ANNEX

26

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical renewable power generation potentials

27

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany and EU-28

Germany and the EU have (very) high technical renewable electricity potentials

ndash DE ~1000 TWha potential vs ~500 TWh net electricity consumption

ndash EU ~11000 TWha potential vs ~2800 TWh net electricity consumption

Only ~11 (DE) and ~6 (EU28) if this potentials are currently used for renewable power production

The limits to renewable power growth seem to be more of an acceptance issue than costs

[ISE 2015] states PV electricity production costs of 2-4 euroctkWh in Southern and Central Europe by 2050

Renewable power potentials assessed for solarthermal power plants could also be exploited with photovoltaics

28

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany (bars can be stacked)

29

0

500

1000

1500

2000

2500

3000

Windonshore Windoffshore PV Hydro Geothermal

Tech

nic

al p

ote

nti

al (

TWh

yr)

Net electricity consumption 2014 521 TWhyr

Lud

wig

-Bouml

lko

w-S

yste

mte

chn

ik G

mb

H (

LBST

) 2

01

5-1

0-0

5

Maximum

Minimum

Bandwidth for technical renewableenergy potentials

Assumption in this study

1000 TWhyr

Potential already exploited

Data [BMU 2010] [BMU 2012] [BWE 2013] [ISE 2015] [IWES_PV 2012] [IWES 2012] [Quaschning 2013] [TAB 2003] [UBA 2013] 2014 data [AGEB 2015] provisional as per 082015 2014 data [BDEW 2015] provisional as per 082015

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

CO2 avoidance costs

30

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

1800

2000G

aso

line

kero

sen

ed

iese

l

EE-P

tL m

eth

ano

l ro

ute

EE-P

tL F

T ro

ute

EE-P

tL S

OEC

met

han

ol r

ou

te

EE-P

tL S

OEC

-FT

rou

te

EE-C

H4

(C

NG

)

EE-C

H4

(LN

G)

EE-C

H4

(C

NG

) SO

EC

EE-C

H4

(LN

G)

SOEC

EE-C

GH

2 (

on

site

)

Elec

tric

ity

for

BEV

Liquid fuelsreference

Liquid fuels (PtL) Gaseous fuels (PtG) Electricity

FOSSIL RENEWABLE

GH

G a

void

ance

co

sts

(eurot

CO

2e

qu

ival

en

t)

2015 2020 2030 2040 2050

LBST

20

15

-12

-22

Benchmarks Fuels from

crude oil(0 eurot CO2)

-58-57

-67 -67

-58

-61

-62

-65-67

-23

CO2 avoidance costs well-to-tank [eurot CO2-eq] for PtX in DE

31

Least-cost short-term Electricity

Least-cost long-term Electricity and CGH2

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Non-CO2-GHG vehicle

Methanol

H2

Electricity mix (train)

Electricity mix (04 kV)

CH4

DieselKerosene

Gasoline

Past Future

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Non-CO2-GHG vehicle

Methanol

H2

Electricity mix (train)

Electricity mix (04 kV)

CH4

DieselKerosene

Gasoline

Past Future

Greenhouse gas emissions | DE | All transport | laquoFVVraquo

13

by fuel

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

0

50

100

150

200

250

300

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

GH

G e

mis

sio

ns

(Mt

CO

2e

qy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future by mode

FVV + HIGH FVV + LOW

Climate impacts from high-altitude emissions (aviation) not included

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Final fuel demand electricity demand

14

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Fuel demand (TWha) | DE | All transport | laquoFVVraquo

Growth in HIGH transport demand overcompensates efficiency improvements

Relative importance of trucks and aviation in fuel demand increases

Thereof notably international aviation 15

0

100

200

300

400

500

600

700

800

900

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

Fin

al e

ne

rgy

use

(TW

hy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

FVV + HIGH FVV + LOW

0

100

200

300

400

500

600

700

800

900

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

Fin

al e

ne

rgy

use

(TW

hy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Total electricity demand in 2050 may be a factor 2 to 4 of todayrsquos electricity demand

All scenarios would likely require renewable energy imports

0

500

1000

1500

2000

2500

2015 2020 2025 2030 2035 2040 2045 2050

TWha

PTL + HIGH

PTL + LOW

FVV + HIGH

FVV + LOW

eMob + LOW

LBST

201

5-1

1-27

non-transport PtX (heat chemicals)

non-transport efficiency targets

521 TWhe net electricity consumption 2014

Electricity demand (TWhea) | DE | Today + transportation

16

1000 TWhea technical renewable electricity potential (this study)

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

hellip and cumulated investments until 2050

17

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Methodology

The cumulated investments consist of the following elements

ndash Renewable power plants

ndash PtX production plants

ndash Infrastructure for fuel transport amp distribution

Investments for end-of-life replacements are included in the cost model with a PtX plant lifetime of 25 years

Learning curves for electrolysers assumed ie the 1st PtX production plant is more expensive than the nth one

BEV home-charging assumed

Vehicle costs not included

18

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Germany

19 For comparison 2014 in Germany

Gross domestic product (GDP) = 2900 billion euroa

gt70 GW renewable power (38 GW wind onshore 3 GW wind offshore 39 GW PV)

0

200

400

600

800

1000

1200

1400

1600

PTL+HIGH PTL+LOW FVV+HIGH FVV+LOW eMob+LOW

billion euro

6200 H2 refuelling stations

4600 CH4 refueling stations

PtX production plants

360-900 GW RES power plants

PTL FVV eMob

LBST

201

5-12

-23

BEV Home charging

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

System integration of fluctating renewable power generation

20

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Efficiency vs renewables integration (Scaling indicativefor educational purpose)

Trade-off between efficiency and renewable power integration (ldquoSystemdienlichkeitrdquo)

Robust option Hydrogen

Sole option providing zero well-to-wheel emissions AND long-term energy storage Hydrogen

BEV battery-electric vehicle EV electric vehicle DSM demand-side management PTG power-to-gas PTL power-to-liquids

Electric powertrain Zero (local) emissions

demand flexible up to few hours

demand flexibility over hoursday(s) Energy storage over daysweeksmonths

demand flexibility add measures

LBST

201

5-12

-18

EV Overhead

line

BEV Charging

PTG Hydrogen

PTG Methane

PTL Gasoline Diesel

Efficiency Propulsion+Upstream

Storage density amp Demand flexibility

21

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

22

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Conclusions from the FVV Future Fuel study in a nutshell

Transportation demand development (pkm tkm) is strongest driver for fuelelectricity demand

PtX fuel costs could half between 2015 and 2050 PtL imports ~20 lower in cost Further cost reductions are subject to location-specific business cases

PtX costs are dominated by electricity costs which strongly depends on the fuel choice (H2 CH4 PTL) and associated plant efficiencies

Fuel distribution infrastructure costs are negligible compared to the upstream investments required for any of the scenarios analysed

Cumulated investments for Energiewende (energy transition) in the transportation sector seem manageable for any of the scenarios analysed

All scenarios analysed will probably exceed technicalacceptable renewable electricity potentials in Germany Import of PtL (if any) is likely for cost reasons

Transport must get more electric with regard to the fuel and the propulsion system

23 pkm ∙ person kilometre tkm ∙ tonne kilometre PtX ∙ Power-to-anything PtL ∙ Power-to-liquids

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Literature

P Schmidt W Zittel W Weindorf T Raksha (LBST)

Renewables in Transport 2050 ndash Empowering a sustainable mobility future with zero emission fuels from renewable electricity ndash Europe and Germany

Research Association for Combustion Engines eV (ed)

FVV-Report 1086 2016

Download

httpwwwfvv-netdeendownloadrenewables-in-transport-2050renewables-in-transport-2050html

24

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

LBST Experts

Patrick Schmidt (Dipl-Ing)

T +49 (0)89 608110-36 E PatrickSchmidtLBSTde

Dr Werner Zittel

Werner Weindorf (Dipl-Ing)

Tetyana Raksha (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH

Daimlerstr 15 85521 MunichOttobrunn Germany httpwwwlbstde

25

Acknowledgement

This study was financed by the FVV and supported by members of the FVV Working Group laquoFuture Fuelsraquo

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

ANNEX

26

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical renewable power generation potentials

27

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany and EU-28

Germany and the EU have (very) high technical renewable electricity potentials

ndash DE ~1000 TWha potential vs ~500 TWh net electricity consumption

ndash EU ~11000 TWha potential vs ~2800 TWh net electricity consumption

Only ~11 (DE) and ~6 (EU28) if this potentials are currently used for renewable power production

The limits to renewable power growth seem to be more of an acceptance issue than costs

[ISE 2015] states PV electricity production costs of 2-4 euroctkWh in Southern and Central Europe by 2050

Renewable power potentials assessed for solarthermal power plants could also be exploited with photovoltaics

28

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany (bars can be stacked)

29

0

500

1000

1500

2000

2500

3000

Windonshore Windoffshore PV Hydro Geothermal

Tech

nic

al p

ote

nti

al (

TWh

yr)

Net electricity consumption 2014 521 TWhyr

Lud

wig

-Bouml

lko

w-S

yste

mte

chn

ik G

mb

H (

LBST

) 2

01

5-1

0-0

5

Maximum

Minimum

Bandwidth for technical renewableenergy potentials

Assumption in this study

1000 TWhyr

Potential already exploited

Data [BMU 2010] [BMU 2012] [BWE 2013] [ISE 2015] [IWES_PV 2012] [IWES 2012] [Quaschning 2013] [TAB 2003] [UBA 2013] 2014 data [AGEB 2015] provisional as per 082015 2014 data [BDEW 2015] provisional as per 082015

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

CO2 avoidance costs

30

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

1800

2000G

aso

line

kero

sen

ed

iese

l

EE-P

tL m

eth

ano

l ro

ute

EE-P

tL F

T ro

ute

EE-P

tL S

OEC

met

han

ol r

ou

te

EE-P

tL S

OEC

-FT

rou

te

EE-C

H4

(C

NG

)

EE-C

H4

(LN

G)

EE-C

H4

(C

NG

) SO

EC

EE-C

H4

(LN

G)

SOEC

EE-C

GH

2 (

on

site

)

Elec

tric

ity

for

BEV

Liquid fuelsreference

Liquid fuels (PtL) Gaseous fuels (PtG) Electricity

FOSSIL RENEWABLE

GH

G a

void

ance

co

sts

(eurot

CO

2e

qu

ival

en

t)

2015 2020 2030 2040 2050

LBST

20

15

-12

-22

Benchmarks Fuels from

crude oil(0 eurot CO2)

-58-57

-67 -67

-58

-61

-62

-65-67

-23

CO2 avoidance costs well-to-tank [eurot CO2-eq] for PtX in DE

31

Least-cost short-term Electricity

Least-cost long-term Electricity and CGH2

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Final fuel demand electricity demand

14

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Fuel demand (TWha) | DE | All transport | laquoFVVraquo

Growth in HIGH transport demand overcompensates efficiency improvements

Relative importance of trucks and aviation in fuel demand increases

Thereof notably international aviation 15

0

100

200

300

400

500

600

700

800

900

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

Fin

al e

ne

rgy

use

(TW

hy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

FVV + HIGH FVV + LOW

0

100

200

300

400

500

600

700

800

900

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

Fin

al e

ne

rgy

use

(TW

hy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Total electricity demand in 2050 may be a factor 2 to 4 of todayrsquos electricity demand

All scenarios would likely require renewable energy imports

0

500

1000

1500

2000

2500

2015 2020 2025 2030 2035 2040 2045 2050

TWha

PTL + HIGH

PTL + LOW

FVV + HIGH

FVV + LOW

eMob + LOW

LBST

201

5-1

1-27

non-transport PtX (heat chemicals)

non-transport efficiency targets

521 TWhe net electricity consumption 2014

Electricity demand (TWhea) | DE | Today + transportation

16

1000 TWhea technical renewable electricity potential (this study)

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

hellip and cumulated investments until 2050

17

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Methodology

The cumulated investments consist of the following elements

ndash Renewable power plants

ndash PtX production plants

ndash Infrastructure for fuel transport amp distribution

Investments for end-of-life replacements are included in the cost model with a PtX plant lifetime of 25 years

Learning curves for electrolysers assumed ie the 1st PtX production plant is more expensive than the nth one

BEV home-charging assumed

Vehicle costs not included

18

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Germany

19 For comparison 2014 in Germany

Gross domestic product (GDP) = 2900 billion euroa

gt70 GW renewable power (38 GW wind onshore 3 GW wind offshore 39 GW PV)

0

200

400

600

800

1000

1200

1400

1600

PTL+HIGH PTL+LOW FVV+HIGH FVV+LOW eMob+LOW

billion euro

6200 H2 refuelling stations

4600 CH4 refueling stations

PtX production plants

360-900 GW RES power plants

PTL FVV eMob

LBST

201

5-12

-23

BEV Home charging

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

System integration of fluctating renewable power generation

20

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Efficiency vs renewables integration (Scaling indicativefor educational purpose)

Trade-off between efficiency and renewable power integration (ldquoSystemdienlichkeitrdquo)

Robust option Hydrogen

Sole option providing zero well-to-wheel emissions AND long-term energy storage Hydrogen

BEV battery-electric vehicle EV electric vehicle DSM demand-side management PTG power-to-gas PTL power-to-liquids

Electric powertrain Zero (local) emissions

demand flexible up to few hours

demand flexibility over hoursday(s) Energy storage over daysweeksmonths

demand flexibility add measures

LBST

201

5-12

-18

EV Overhead

line

BEV Charging

PTG Hydrogen

PTG Methane

PTL Gasoline Diesel

Efficiency Propulsion+Upstream

Storage density amp Demand flexibility

21

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

22

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Conclusions from the FVV Future Fuel study in a nutshell

Transportation demand development (pkm tkm) is strongest driver for fuelelectricity demand

PtX fuel costs could half between 2015 and 2050 PtL imports ~20 lower in cost Further cost reductions are subject to location-specific business cases

PtX costs are dominated by electricity costs which strongly depends on the fuel choice (H2 CH4 PTL) and associated plant efficiencies

Fuel distribution infrastructure costs are negligible compared to the upstream investments required for any of the scenarios analysed

Cumulated investments for Energiewende (energy transition) in the transportation sector seem manageable for any of the scenarios analysed

All scenarios analysed will probably exceed technicalacceptable renewable electricity potentials in Germany Import of PtL (if any) is likely for cost reasons

Transport must get more electric with regard to the fuel and the propulsion system

23 pkm ∙ person kilometre tkm ∙ tonne kilometre PtX ∙ Power-to-anything PtL ∙ Power-to-liquids

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Literature

P Schmidt W Zittel W Weindorf T Raksha (LBST)

Renewables in Transport 2050 ndash Empowering a sustainable mobility future with zero emission fuels from renewable electricity ndash Europe and Germany

Research Association for Combustion Engines eV (ed)

FVV-Report 1086 2016

Download

httpwwwfvv-netdeendownloadrenewables-in-transport-2050renewables-in-transport-2050html

24

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

LBST Experts

Patrick Schmidt (Dipl-Ing)

T +49 (0)89 608110-36 E PatrickSchmidtLBSTde

Dr Werner Zittel

Werner Weindorf (Dipl-Ing)

Tetyana Raksha (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH

Daimlerstr 15 85521 MunichOttobrunn Germany httpwwwlbstde

25

Acknowledgement

This study was financed by the FVV and supported by members of the FVV Working Group laquoFuture Fuelsraquo

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

ANNEX

26

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical renewable power generation potentials

27

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany and EU-28

Germany and the EU have (very) high technical renewable electricity potentials

ndash DE ~1000 TWha potential vs ~500 TWh net electricity consumption

ndash EU ~11000 TWha potential vs ~2800 TWh net electricity consumption

Only ~11 (DE) and ~6 (EU28) if this potentials are currently used for renewable power production

The limits to renewable power growth seem to be more of an acceptance issue than costs

[ISE 2015] states PV electricity production costs of 2-4 euroctkWh in Southern and Central Europe by 2050

Renewable power potentials assessed for solarthermal power plants could also be exploited with photovoltaics

28

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany (bars can be stacked)

29

0

500

1000

1500

2000

2500

3000

Windonshore Windoffshore PV Hydro Geothermal

Tech

nic

al p

ote

nti

al (

TWh

yr)

Net electricity consumption 2014 521 TWhyr

Lud

wig

-Bouml

lko

w-S

yste

mte

chn

ik G

mb

H (

LBST

) 2

01

5-1

0-0

5

Maximum

Minimum

Bandwidth for technical renewableenergy potentials

Assumption in this study

1000 TWhyr

Potential already exploited

Data [BMU 2010] [BMU 2012] [BWE 2013] [ISE 2015] [IWES_PV 2012] [IWES 2012] [Quaschning 2013] [TAB 2003] [UBA 2013] 2014 data [AGEB 2015] provisional as per 082015 2014 data [BDEW 2015] provisional as per 082015

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

CO2 avoidance costs

30

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

1800

2000G

aso

line

kero

sen

ed

iese

l

EE-P

tL m

eth

ano

l ro

ute

EE-P

tL F

T ro

ute

EE-P

tL S

OEC

met

han

ol r

ou

te

EE-P

tL S

OEC

-FT

rou

te

EE-C

H4

(C

NG

)

EE-C

H4

(LN

G)

EE-C

H4

(C

NG

) SO

EC

EE-C

H4

(LN

G)

SOEC

EE-C

GH

2 (

on

site

)

Elec

tric

ity

for

BEV

Liquid fuelsreference

Liquid fuels (PtL) Gaseous fuels (PtG) Electricity

FOSSIL RENEWABLE

GH

G a

void

ance

co

sts

(eurot

CO

2e

qu

ival

en

t)

2015 2020 2030 2040 2050

LBST

20

15

-12

-22

Benchmarks Fuels from

crude oil(0 eurot CO2)

-58-57

-67 -67

-58

-61

-62

-65-67

-23

CO2 avoidance costs well-to-tank [eurot CO2-eq] for PtX in DE

31

Least-cost short-term Electricity

Least-cost long-term Electricity and CGH2

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Fuel demand (TWha) | DE | All transport | laquoFVVraquo

Growth in HIGH transport demand overcompensates efficiency improvements

Relative importance of trucks and aviation in fuel demand increases

Thereof notably international aviation 15

0

100

200

300

400

500

600

700

800

900

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

Fin

al e

ne

rgy

use

(TW

hy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

FVV + HIGH FVV + LOW

0

100

200

300

400

500

600

700

800

900

19

95

20

00

20

05

20

10

20

15

20

20

20

25

20

30

20

35

20

40

20

45

20

50

Fin

al e

ne

rgy

use

(TW

hy

r)

Aviation

Ships (freight)

Trucks

Rail (freight)

Rail (passenger)

Buses

Passenger vehicles

Past Future

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Total electricity demand in 2050 may be a factor 2 to 4 of todayrsquos electricity demand

All scenarios would likely require renewable energy imports

0

500

1000

1500

2000

2500

2015 2020 2025 2030 2035 2040 2045 2050

TWha

PTL + HIGH

PTL + LOW

FVV + HIGH

FVV + LOW

eMob + LOW

LBST

201

5-1

1-27

non-transport PtX (heat chemicals)

non-transport efficiency targets

521 TWhe net electricity consumption 2014

Electricity demand (TWhea) | DE | Today + transportation

16

1000 TWhea technical renewable electricity potential (this study)

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

hellip and cumulated investments until 2050

17

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Methodology

The cumulated investments consist of the following elements

ndash Renewable power plants

ndash PtX production plants

ndash Infrastructure for fuel transport amp distribution

Investments for end-of-life replacements are included in the cost model with a PtX plant lifetime of 25 years

Learning curves for electrolysers assumed ie the 1st PtX production plant is more expensive than the nth one

BEV home-charging assumed

Vehicle costs not included

18

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Germany

19 For comparison 2014 in Germany

Gross domestic product (GDP) = 2900 billion euroa

gt70 GW renewable power (38 GW wind onshore 3 GW wind offshore 39 GW PV)

0

200

400

600

800

1000

1200

1400

1600

PTL+HIGH PTL+LOW FVV+HIGH FVV+LOW eMob+LOW

billion euro

6200 H2 refuelling stations

4600 CH4 refueling stations

PtX production plants

360-900 GW RES power plants

PTL FVV eMob

LBST

201

5-12

-23

BEV Home charging

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

System integration of fluctating renewable power generation

20

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Efficiency vs renewables integration (Scaling indicativefor educational purpose)

Trade-off between efficiency and renewable power integration (ldquoSystemdienlichkeitrdquo)

Robust option Hydrogen

Sole option providing zero well-to-wheel emissions AND long-term energy storage Hydrogen

BEV battery-electric vehicle EV electric vehicle DSM demand-side management PTG power-to-gas PTL power-to-liquids

Electric powertrain Zero (local) emissions

demand flexible up to few hours

demand flexibility over hoursday(s) Energy storage over daysweeksmonths

demand flexibility add measures

LBST

201

5-12

-18

EV Overhead

line

BEV Charging

PTG Hydrogen

PTG Methane

PTL Gasoline Diesel

Efficiency Propulsion+Upstream

Storage density amp Demand flexibility

21

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

22

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Conclusions from the FVV Future Fuel study in a nutshell

Transportation demand development (pkm tkm) is strongest driver for fuelelectricity demand

PtX fuel costs could half between 2015 and 2050 PtL imports ~20 lower in cost Further cost reductions are subject to location-specific business cases

PtX costs are dominated by electricity costs which strongly depends on the fuel choice (H2 CH4 PTL) and associated plant efficiencies

Fuel distribution infrastructure costs are negligible compared to the upstream investments required for any of the scenarios analysed

Cumulated investments for Energiewende (energy transition) in the transportation sector seem manageable for any of the scenarios analysed

All scenarios analysed will probably exceed technicalacceptable renewable electricity potentials in Germany Import of PtL (if any) is likely for cost reasons

Transport must get more electric with regard to the fuel and the propulsion system

23 pkm ∙ person kilometre tkm ∙ tonne kilometre PtX ∙ Power-to-anything PtL ∙ Power-to-liquids

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Literature

P Schmidt W Zittel W Weindorf T Raksha (LBST)

Renewables in Transport 2050 ndash Empowering a sustainable mobility future with zero emission fuels from renewable electricity ndash Europe and Germany

Research Association for Combustion Engines eV (ed)

FVV-Report 1086 2016

Download

httpwwwfvv-netdeendownloadrenewables-in-transport-2050renewables-in-transport-2050html

24

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

LBST Experts

Patrick Schmidt (Dipl-Ing)

T +49 (0)89 608110-36 E PatrickSchmidtLBSTde

Dr Werner Zittel

Werner Weindorf (Dipl-Ing)

Tetyana Raksha (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH

Daimlerstr 15 85521 MunichOttobrunn Germany httpwwwlbstde

25

Acknowledgement

This study was financed by the FVV and supported by members of the FVV Working Group laquoFuture Fuelsraquo

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

ANNEX

26

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical renewable power generation potentials

27

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany and EU-28

Germany and the EU have (very) high technical renewable electricity potentials

ndash DE ~1000 TWha potential vs ~500 TWh net electricity consumption

ndash EU ~11000 TWha potential vs ~2800 TWh net electricity consumption

Only ~11 (DE) and ~6 (EU28) if this potentials are currently used for renewable power production

The limits to renewable power growth seem to be more of an acceptance issue than costs

[ISE 2015] states PV electricity production costs of 2-4 euroctkWh in Southern and Central Europe by 2050

Renewable power potentials assessed for solarthermal power plants could also be exploited with photovoltaics

28

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany (bars can be stacked)

29

0

500

1000

1500

2000

2500

3000

Windonshore Windoffshore PV Hydro Geothermal

Tech

nic

al p

ote

nti

al (

TWh

yr)

Net electricity consumption 2014 521 TWhyr

Lud

wig

-Bouml

lko

w-S

yste

mte

chn

ik G

mb

H (

LBST

) 2

01

5-1

0-0

5

Maximum

Minimum

Bandwidth for technical renewableenergy potentials

Assumption in this study

1000 TWhyr

Potential already exploited

Data [BMU 2010] [BMU 2012] [BWE 2013] [ISE 2015] [IWES_PV 2012] [IWES 2012] [Quaschning 2013] [TAB 2003] [UBA 2013] 2014 data [AGEB 2015] provisional as per 082015 2014 data [BDEW 2015] provisional as per 082015

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

CO2 avoidance costs

30

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

1800

2000G

aso

line

kero

sen

ed

iese

l

EE-P

tL m

eth

ano

l ro

ute

EE-P

tL F

T ro

ute

EE-P

tL S

OEC

met

han

ol r

ou

te

EE-P

tL S

OEC

-FT

rou

te

EE-C

H4

(C

NG

)

EE-C

H4

(LN

G)

EE-C

H4

(C

NG

) SO

EC

EE-C

H4

(LN

G)

SOEC

EE-C

GH

2 (

on

site

)

Elec

tric

ity

for

BEV

Liquid fuelsreference

Liquid fuels (PtL) Gaseous fuels (PtG) Electricity

FOSSIL RENEWABLE

GH

G a

void

ance

co

sts

(eurot

CO

2e

qu

ival

en

t)

2015 2020 2030 2040 2050

LBST

20

15

-12

-22

Benchmarks Fuels from

crude oil(0 eurot CO2)

-58-57

-67 -67

-58

-61

-62

-65-67

-23

CO2 avoidance costs well-to-tank [eurot CO2-eq] for PtX in DE

31

Least-cost short-term Electricity

Least-cost long-term Electricity and CGH2

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Total electricity demand in 2050 may be a factor 2 to 4 of todayrsquos electricity demand

All scenarios would likely require renewable energy imports

0

500

1000

1500

2000

2500

2015 2020 2025 2030 2035 2040 2045 2050

TWha

PTL + HIGH

PTL + LOW

FVV + HIGH

FVV + LOW

eMob + LOW

LBST

201

5-1

1-27

non-transport PtX (heat chemicals)

non-transport efficiency targets

521 TWhe net electricity consumption 2014

Electricity demand (TWhea) | DE | Today + transportation

16

1000 TWhea technical renewable electricity potential (this study)

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

hellip and cumulated investments until 2050

17

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Methodology

The cumulated investments consist of the following elements

ndash Renewable power plants

ndash PtX production plants

ndash Infrastructure for fuel transport amp distribution

Investments for end-of-life replacements are included in the cost model with a PtX plant lifetime of 25 years

Learning curves for electrolysers assumed ie the 1st PtX production plant is more expensive than the nth one

BEV home-charging assumed

Vehicle costs not included

18

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Germany

19 For comparison 2014 in Germany

Gross domestic product (GDP) = 2900 billion euroa

gt70 GW renewable power (38 GW wind onshore 3 GW wind offshore 39 GW PV)

0

200

400

600

800

1000

1200

1400

1600

PTL+HIGH PTL+LOW FVV+HIGH FVV+LOW eMob+LOW

billion euro

6200 H2 refuelling stations

4600 CH4 refueling stations

PtX production plants

360-900 GW RES power plants

PTL FVV eMob

LBST

201

5-12

-23

BEV Home charging

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

System integration of fluctating renewable power generation

20

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Efficiency vs renewables integration (Scaling indicativefor educational purpose)

Trade-off between efficiency and renewable power integration (ldquoSystemdienlichkeitrdquo)

Robust option Hydrogen

Sole option providing zero well-to-wheel emissions AND long-term energy storage Hydrogen

BEV battery-electric vehicle EV electric vehicle DSM demand-side management PTG power-to-gas PTL power-to-liquids

Electric powertrain Zero (local) emissions

demand flexible up to few hours

demand flexibility over hoursday(s) Energy storage over daysweeksmonths

demand flexibility add measures

LBST

201

5-12

-18

EV Overhead

line

BEV Charging

PTG Hydrogen

PTG Methane

PTL Gasoline Diesel

Efficiency Propulsion+Upstream

Storage density amp Demand flexibility

21

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

22

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Conclusions from the FVV Future Fuel study in a nutshell

Transportation demand development (pkm tkm) is strongest driver for fuelelectricity demand

PtX fuel costs could half between 2015 and 2050 PtL imports ~20 lower in cost Further cost reductions are subject to location-specific business cases

PtX costs are dominated by electricity costs which strongly depends on the fuel choice (H2 CH4 PTL) and associated plant efficiencies

Fuel distribution infrastructure costs are negligible compared to the upstream investments required for any of the scenarios analysed

Cumulated investments for Energiewende (energy transition) in the transportation sector seem manageable for any of the scenarios analysed

All scenarios analysed will probably exceed technicalacceptable renewable electricity potentials in Germany Import of PtL (if any) is likely for cost reasons

Transport must get more electric with regard to the fuel and the propulsion system

23 pkm ∙ person kilometre tkm ∙ tonne kilometre PtX ∙ Power-to-anything PtL ∙ Power-to-liquids

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Literature

P Schmidt W Zittel W Weindorf T Raksha (LBST)

Renewables in Transport 2050 ndash Empowering a sustainable mobility future with zero emission fuels from renewable electricity ndash Europe and Germany

Research Association for Combustion Engines eV (ed)

FVV-Report 1086 2016

Download

httpwwwfvv-netdeendownloadrenewables-in-transport-2050renewables-in-transport-2050html

24

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

LBST Experts

Patrick Schmidt (Dipl-Ing)

T +49 (0)89 608110-36 E PatrickSchmidtLBSTde

Dr Werner Zittel

Werner Weindorf (Dipl-Ing)

Tetyana Raksha (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH

Daimlerstr 15 85521 MunichOttobrunn Germany httpwwwlbstde

25

Acknowledgement

This study was financed by the FVV and supported by members of the FVV Working Group laquoFuture Fuelsraquo

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

ANNEX

26

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical renewable power generation potentials

27

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany and EU-28

Germany and the EU have (very) high technical renewable electricity potentials

ndash DE ~1000 TWha potential vs ~500 TWh net electricity consumption

ndash EU ~11000 TWha potential vs ~2800 TWh net electricity consumption

Only ~11 (DE) and ~6 (EU28) if this potentials are currently used for renewable power production

The limits to renewable power growth seem to be more of an acceptance issue than costs

[ISE 2015] states PV electricity production costs of 2-4 euroctkWh in Southern and Central Europe by 2050

Renewable power potentials assessed for solarthermal power plants could also be exploited with photovoltaics

28

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany (bars can be stacked)

29

0

500

1000

1500

2000

2500

3000

Windonshore Windoffshore PV Hydro Geothermal

Tech

nic

al p

ote

nti

al (

TWh

yr)

Net electricity consumption 2014 521 TWhyr

Lud

wig

-Bouml

lko

w-S

yste

mte

chn

ik G

mb

H (

LBST

) 2

01

5-1

0-0

5

Maximum

Minimum

Bandwidth for technical renewableenergy potentials

Assumption in this study

1000 TWhyr

Potential already exploited

Data [BMU 2010] [BMU 2012] [BWE 2013] [ISE 2015] [IWES_PV 2012] [IWES 2012] [Quaschning 2013] [TAB 2003] [UBA 2013] 2014 data [AGEB 2015] provisional as per 082015 2014 data [BDEW 2015] provisional as per 082015

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

CO2 avoidance costs

30

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

1800

2000G

aso

line

kero

sen

ed

iese

l

EE-P

tL m

eth

ano

l ro

ute

EE-P

tL F

T ro

ute

EE-P

tL S

OEC

met

han

ol r

ou

te

EE-P

tL S

OEC

-FT

rou

te

EE-C

H4

(C

NG

)

EE-C

H4

(LN

G)

EE-C

H4

(C

NG

) SO

EC

EE-C

H4

(LN

G)

SOEC

EE-C

GH

2 (

on

site

)

Elec

tric

ity

for

BEV

Liquid fuelsreference

Liquid fuels (PtL) Gaseous fuels (PtG) Electricity

FOSSIL RENEWABLE

GH

G a

void

ance

co

sts

(eurot

CO

2e

qu

ival

en

t)

2015 2020 2030 2040 2050

LBST

20

15

-12

-22

Benchmarks Fuels from

crude oil(0 eurot CO2)

-58-57

-67 -67

-58

-61

-62

-65-67

-23

CO2 avoidance costs well-to-tank [eurot CO2-eq] for PtX in DE

31

Least-cost short-term Electricity

Least-cost long-term Electricity and CGH2

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

hellip and cumulated investments until 2050

17

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Methodology

The cumulated investments consist of the following elements

ndash Renewable power plants

ndash PtX production plants

ndash Infrastructure for fuel transport amp distribution

Investments for end-of-life replacements are included in the cost model with a PtX plant lifetime of 25 years

Learning curves for electrolysers assumed ie the 1st PtX production plant is more expensive than the nth one

BEV home-charging assumed

Vehicle costs not included

18

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Germany

19 For comparison 2014 in Germany

Gross domestic product (GDP) = 2900 billion euroa

gt70 GW renewable power (38 GW wind onshore 3 GW wind offshore 39 GW PV)

0

200

400

600

800

1000

1200

1400

1600

PTL+HIGH PTL+LOW FVV+HIGH FVV+LOW eMob+LOW

billion euro

6200 H2 refuelling stations

4600 CH4 refueling stations

PtX production plants

360-900 GW RES power plants

PTL FVV eMob

LBST

201

5-12

-23

BEV Home charging

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

System integration of fluctating renewable power generation

20

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Efficiency vs renewables integration (Scaling indicativefor educational purpose)

Trade-off between efficiency and renewable power integration (ldquoSystemdienlichkeitrdquo)

Robust option Hydrogen

Sole option providing zero well-to-wheel emissions AND long-term energy storage Hydrogen

BEV battery-electric vehicle EV electric vehicle DSM demand-side management PTG power-to-gas PTL power-to-liquids

Electric powertrain Zero (local) emissions

demand flexible up to few hours

demand flexibility over hoursday(s) Energy storage over daysweeksmonths

demand flexibility add measures

LBST

201

5-12

-18

EV Overhead

line

BEV Charging

PTG Hydrogen

PTG Methane

PTL Gasoline Diesel

Efficiency Propulsion+Upstream

Storage density amp Demand flexibility

21

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

22

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Conclusions from the FVV Future Fuel study in a nutshell

Transportation demand development (pkm tkm) is strongest driver for fuelelectricity demand

PtX fuel costs could half between 2015 and 2050 PtL imports ~20 lower in cost Further cost reductions are subject to location-specific business cases

PtX costs are dominated by electricity costs which strongly depends on the fuel choice (H2 CH4 PTL) and associated plant efficiencies

Fuel distribution infrastructure costs are negligible compared to the upstream investments required for any of the scenarios analysed

Cumulated investments for Energiewende (energy transition) in the transportation sector seem manageable for any of the scenarios analysed

All scenarios analysed will probably exceed technicalacceptable renewable electricity potentials in Germany Import of PtL (if any) is likely for cost reasons

Transport must get more electric with regard to the fuel and the propulsion system

23 pkm ∙ person kilometre tkm ∙ tonne kilometre PtX ∙ Power-to-anything PtL ∙ Power-to-liquids

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Literature

P Schmidt W Zittel W Weindorf T Raksha (LBST)

Renewables in Transport 2050 ndash Empowering a sustainable mobility future with zero emission fuels from renewable electricity ndash Europe and Germany

Research Association for Combustion Engines eV (ed)

FVV-Report 1086 2016

Download

httpwwwfvv-netdeendownloadrenewables-in-transport-2050renewables-in-transport-2050html

24

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

LBST Experts

Patrick Schmidt (Dipl-Ing)

T +49 (0)89 608110-36 E PatrickSchmidtLBSTde

Dr Werner Zittel

Werner Weindorf (Dipl-Ing)

Tetyana Raksha (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH

Daimlerstr 15 85521 MunichOttobrunn Germany httpwwwlbstde

25

Acknowledgement

This study was financed by the FVV and supported by members of the FVV Working Group laquoFuture Fuelsraquo

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

ANNEX

26

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical renewable power generation potentials

27

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany and EU-28

Germany and the EU have (very) high technical renewable electricity potentials

ndash DE ~1000 TWha potential vs ~500 TWh net electricity consumption

ndash EU ~11000 TWha potential vs ~2800 TWh net electricity consumption

Only ~11 (DE) and ~6 (EU28) if this potentials are currently used for renewable power production

The limits to renewable power growth seem to be more of an acceptance issue than costs

[ISE 2015] states PV electricity production costs of 2-4 euroctkWh in Southern and Central Europe by 2050

Renewable power potentials assessed for solarthermal power plants could also be exploited with photovoltaics

28

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany (bars can be stacked)

29

0

500

1000

1500

2000

2500

3000

Windonshore Windoffshore PV Hydro Geothermal

Tech

nic

al p

ote

nti

al (

TWh

yr)

Net electricity consumption 2014 521 TWhyr

Lud

wig

-Bouml

lko

w-S

yste

mte

chn

ik G

mb

H (

LBST

) 2

01

5-1

0-0

5

Maximum

Minimum

Bandwidth for technical renewableenergy potentials

Assumption in this study

1000 TWhyr

Potential already exploited

Data [BMU 2010] [BMU 2012] [BWE 2013] [ISE 2015] [IWES_PV 2012] [IWES 2012] [Quaschning 2013] [TAB 2003] [UBA 2013] 2014 data [AGEB 2015] provisional as per 082015 2014 data [BDEW 2015] provisional as per 082015

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

CO2 avoidance costs

30

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

1800

2000G

aso

line

kero

sen

ed

iese

l

EE-P

tL m

eth

ano

l ro

ute

EE-P

tL F

T ro

ute

EE-P

tL S

OEC

met

han

ol r

ou

te

EE-P

tL S

OEC

-FT

rou

te

EE-C

H4

(C

NG

)

EE-C

H4

(LN

G)

EE-C

H4

(C

NG

) SO

EC

EE-C

H4

(LN

G)

SOEC

EE-C

GH

2 (

on

site

)

Elec

tric

ity

for

BEV

Liquid fuelsreference

Liquid fuels (PtL) Gaseous fuels (PtG) Electricity

FOSSIL RENEWABLE

GH

G a

void

ance

co

sts

(eurot

CO

2e

qu

ival

en

t)

2015 2020 2030 2040 2050

LBST

20

15

-12

-22

Benchmarks Fuels from

crude oil(0 eurot CO2)

-58-57

-67 -67

-58

-61

-62

-65-67

-23

CO2 avoidance costs well-to-tank [eurot CO2-eq] for PtX in DE

31

Least-cost short-term Electricity

Least-cost long-term Electricity and CGH2

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Methodology

The cumulated investments consist of the following elements

ndash Renewable power plants

ndash PtX production plants

ndash Infrastructure for fuel transport amp distribution

Investments for end-of-life replacements are included in the cost model with a PtX plant lifetime of 25 years

Learning curves for electrolysers assumed ie the 1st PtX production plant is more expensive than the nth one

BEV home-charging assumed

Vehicle costs not included

18

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Germany

19 For comparison 2014 in Germany

Gross domestic product (GDP) = 2900 billion euroa

gt70 GW renewable power (38 GW wind onshore 3 GW wind offshore 39 GW PV)

0

200

400

600

800

1000

1200

1400

1600

PTL+HIGH PTL+LOW FVV+HIGH FVV+LOW eMob+LOW

billion euro

6200 H2 refuelling stations

4600 CH4 refueling stations

PtX production plants

360-900 GW RES power plants

PTL FVV eMob

LBST

201

5-12

-23

BEV Home charging

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

System integration of fluctating renewable power generation

20

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Efficiency vs renewables integration (Scaling indicativefor educational purpose)

Trade-off between efficiency and renewable power integration (ldquoSystemdienlichkeitrdquo)

Robust option Hydrogen

Sole option providing zero well-to-wheel emissions AND long-term energy storage Hydrogen

BEV battery-electric vehicle EV electric vehicle DSM demand-side management PTG power-to-gas PTL power-to-liquids

Electric powertrain Zero (local) emissions

demand flexible up to few hours

demand flexibility over hoursday(s) Energy storage over daysweeksmonths

demand flexibility add measures

LBST

201

5-12

-18

EV Overhead

line

BEV Charging

PTG Hydrogen

PTG Methane

PTL Gasoline Diesel

Efficiency Propulsion+Upstream

Storage density amp Demand flexibility

21

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

22

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Conclusions from the FVV Future Fuel study in a nutshell

Transportation demand development (pkm tkm) is strongest driver for fuelelectricity demand

PtX fuel costs could half between 2015 and 2050 PtL imports ~20 lower in cost Further cost reductions are subject to location-specific business cases

PtX costs are dominated by electricity costs which strongly depends on the fuel choice (H2 CH4 PTL) and associated plant efficiencies

Fuel distribution infrastructure costs are negligible compared to the upstream investments required for any of the scenarios analysed

Cumulated investments for Energiewende (energy transition) in the transportation sector seem manageable for any of the scenarios analysed

All scenarios analysed will probably exceed technicalacceptable renewable electricity potentials in Germany Import of PtL (if any) is likely for cost reasons

Transport must get more electric with regard to the fuel and the propulsion system

23 pkm ∙ person kilometre tkm ∙ tonne kilometre PtX ∙ Power-to-anything PtL ∙ Power-to-liquids

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Literature

P Schmidt W Zittel W Weindorf T Raksha (LBST)

Renewables in Transport 2050 ndash Empowering a sustainable mobility future with zero emission fuels from renewable electricity ndash Europe and Germany

Research Association for Combustion Engines eV (ed)

FVV-Report 1086 2016

Download

httpwwwfvv-netdeendownloadrenewables-in-transport-2050renewables-in-transport-2050html

24

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

LBST Experts

Patrick Schmidt (Dipl-Ing)

T +49 (0)89 608110-36 E PatrickSchmidtLBSTde

Dr Werner Zittel

Werner Weindorf (Dipl-Ing)

Tetyana Raksha (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH

Daimlerstr 15 85521 MunichOttobrunn Germany httpwwwlbstde

25

Acknowledgement

This study was financed by the FVV and supported by members of the FVV Working Group laquoFuture Fuelsraquo

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

ANNEX

26

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical renewable power generation potentials

27

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany and EU-28

Germany and the EU have (very) high technical renewable electricity potentials

ndash DE ~1000 TWha potential vs ~500 TWh net electricity consumption

ndash EU ~11000 TWha potential vs ~2800 TWh net electricity consumption

Only ~11 (DE) and ~6 (EU28) if this potentials are currently used for renewable power production

The limits to renewable power growth seem to be more of an acceptance issue than costs

[ISE 2015] states PV electricity production costs of 2-4 euroctkWh in Southern and Central Europe by 2050

Renewable power potentials assessed for solarthermal power plants could also be exploited with photovoltaics

28

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany (bars can be stacked)

29

0

500

1000

1500

2000

2500

3000

Windonshore Windoffshore PV Hydro Geothermal

Tech

nic

al p

ote

nti

al (

TWh

yr)

Net electricity consumption 2014 521 TWhyr

Lud

wig

-Bouml

lko

w-S

yste

mte

chn

ik G

mb

H (

LBST

) 2

01

5-1

0-0

5

Maximum

Minimum

Bandwidth for technical renewableenergy potentials

Assumption in this study

1000 TWhyr

Potential already exploited

Data [BMU 2010] [BMU 2012] [BWE 2013] [ISE 2015] [IWES_PV 2012] [IWES 2012] [Quaschning 2013] [TAB 2003] [UBA 2013] 2014 data [AGEB 2015] provisional as per 082015 2014 data [BDEW 2015] provisional as per 082015

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

CO2 avoidance costs

30

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

1800

2000G

aso

line

kero

sen

ed

iese

l

EE-P

tL m

eth

ano

l ro

ute

EE-P

tL F

T ro

ute

EE-P

tL S

OEC

met

han

ol r

ou

te

EE-P

tL S

OEC

-FT

rou

te

EE-C

H4

(C

NG

)

EE-C

H4

(LN

G)

EE-C

H4

(C

NG

) SO

EC

EE-C

H4

(LN

G)

SOEC

EE-C

GH

2 (

on

site

)

Elec

tric

ity

for

BEV

Liquid fuelsreference

Liquid fuels (PtL) Gaseous fuels (PtG) Electricity

FOSSIL RENEWABLE

GH

G a

void

ance

co

sts

(eurot

CO

2e

qu

ival

en

t)

2015 2020 2030 2040 2050

LBST

20

15

-12

-22

Benchmarks Fuels from

crude oil(0 eurot CO2)

-58-57

-67 -67

-58

-61

-62

-65-67

-23

CO2 avoidance costs well-to-tank [eurot CO2-eq] for PtX in DE

31

Least-cost short-term Electricity

Least-cost long-term Electricity and CGH2

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Cumulated investments until 2050 | Germany

19 For comparison 2014 in Germany

Gross domestic product (GDP) = 2900 billion euroa

gt70 GW renewable power (38 GW wind onshore 3 GW wind offshore 39 GW PV)

0

200

400

600

800

1000

1200

1400

1600

PTL+HIGH PTL+LOW FVV+HIGH FVV+LOW eMob+LOW

billion euro

6200 H2 refuelling stations

4600 CH4 refueling stations

PtX production plants

360-900 GW RES power plants

PTL FVV eMob

LBST

201

5-12

-23

BEV Home charging

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

System integration of fluctating renewable power generation

20

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Efficiency vs renewables integration (Scaling indicativefor educational purpose)

Trade-off between efficiency and renewable power integration (ldquoSystemdienlichkeitrdquo)

Robust option Hydrogen

Sole option providing zero well-to-wheel emissions AND long-term energy storage Hydrogen

BEV battery-electric vehicle EV electric vehicle DSM demand-side management PTG power-to-gas PTL power-to-liquids

Electric powertrain Zero (local) emissions

demand flexible up to few hours

demand flexibility over hoursday(s) Energy storage over daysweeksmonths

demand flexibility add measures

LBST

201

5-12

-18

EV Overhead

line

BEV Charging

PTG Hydrogen

PTG Methane

PTL Gasoline Diesel

Efficiency Propulsion+Upstream

Storage density amp Demand flexibility

21

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

22

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Conclusions from the FVV Future Fuel study in a nutshell

Transportation demand development (pkm tkm) is strongest driver for fuelelectricity demand

PtX fuel costs could half between 2015 and 2050 PtL imports ~20 lower in cost Further cost reductions are subject to location-specific business cases

PtX costs are dominated by electricity costs which strongly depends on the fuel choice (H2 CH4 PTL) and associated plant efficiencies

Fuel distribution infrastructure costs are negligible compared to the upstream investments required for any of the scenarios analysed

Cumulated investments for Energiewende (energy transition) in the transportation sector seem manageable for any of the scenarios analysed

All scenarios analysed will probably exceed technicalacceptable renewable electricity potentials in Germany Import of PtL (if any) is likely for cost reasons

Transport must get more electric with regard to the fuel and the propulsion system

23 pkm ∙ person kilometre tkm ∙ tonne kilometre PtX ∙ Power-to-anything PtL ∙ Power-to-liquids

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Literature

P Schmidt W Zittel W Weindorf T Raksha (LBST)

Renewables in Transport 2050 ndash Empowering a sustainable mobility future with zero emission fuels from renewable electricity ndash Europe and Germany

Research Association for Combustion Engines eV (ed)

FVV-Report 1086 2016

Download

httpwwwfvv-netdeendownloadrenewables-in-transport-2050renewables-in-transport-2050html

24

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

LBST Experts

Patrick Schmidt (Dipl-Ing)

T +49 (0)89 608110-36 E PatrickSchmidtLBSTde

Dr Werner Zittel

Werner Weindorf (Dipl-Ing)

Tetyana Raksha (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH

Daimlerstr 15 85521 MunichOttobrunn Germany httpwwwlbstde

25

Acknowledgement

This study was financed by the FVV and supported by members of the FVV Working Group laquoFuture Fuelsraquo

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

ANNEX

26

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical renewable power generation potentials

27

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany and EU-28

Germany and the EU have (very) high technical renewable electricity potentials

ndash DE ~1000 TWha potential vs ~500 TWh net electricity consumption

ndash EU ~11000 TWha potential vs ~2800 TWh net electricity consumption

Only ~11 (DE) and ~6 (EU28) if this potentials are currently used for renewable power production

The limits to renewable power growth seem to be more of an acceptance issue than costs

[ISE 2015] states PV electricity production costs of 2-4 euroctkWh in Southern and Central Europe by 2050

Renewable power potentials assessed for solarthermal power plants could also be exploited with photovoltaics

28

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany (bars can be stacked)

29

0

500

1000

1500

2000

2500

3000

Windonshore Windoffshore PV Hydro Geothermal

Tech

nic

al p

ote

nti

al (

TWh

yr)

Net electricity consumption 2014 521 TWhyr

Lud

wig

-Bouml

lko

w-S

yste

mte

chn

ik G

mb

H (

LBST

) 2

01

5-1

0-0

5

Maximum

Minimum

Bandwidth for technical renewableenergy potentials

Assumption in this study

1000 TWhyr

Potential already exploited

Data [BMU 2010] [BMU 2012] [BWE 2013] [ISE 2015] [IWES_PV 2012] [IWES 2012] [Quaschning 2013] [TAB 2003] [UBA 2013] 2014 data [AGEB 2015] provisional as per 082015 2014 data [BDEW 2015] provisional as per 082015

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

CO2 avoidance costs

30

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

1800

2000G

aso

line

kero

sen

ed

iese

l

EE-P

tL m

eth

ano

l ro

ute

EE-P

tL F

T ro

ute

EE-P

tL S

OEC

met

han

ol r

ou

te

EE-P

tL S

OEC

-FT

rou

te

EE-C

H4

(C

NG

)

EE-C

H4

(LN

G)

EE-C

H4

(C

NG

) SO

EC

EE-C

H4

(LN

G)

SOEC

EE-C

GH

2 (

on

site

)

Elec

tric

ity

for

BEV

Liquid fuelsreference

Liquid fuels (PtL) Gaseous fuels (PtG) Electricity

FOSSIL RENEWABLE

GH

G a

void

ance

co

sts

(eurot

CO

2e

qu

ival

en

t)

2015 2020 2030 2040 2050

LBST

20

15

-12

-22

Benchmarks Fuels from

crude oil(0 eurot CO2)

-58-57

-67 -67

-58

-61

-62

-65-67

-23

CO2 avoidance costs well-to-tank [eurot CO2-eq] for PtX in DE

31

Least-cost short-term Electricity

Least-cost long-term Electricity and CGH2

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

System integration of fluctating renewable power generation

20

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Efficiency vs renewables integration (Scaling indicativefor educational purpose)

Trade-off between efficiency and renewable power integration (ldquoSystemdienlichkeitrdquo)

Robust option Hydrogen

Sole option providing zero well-to-wheel emissions AND long-term energy storage Hydrogen

BEV battery-electric vehicle EV electric vehicle DSM demand-side management PTG power-to-gas PTL power-to-liquids

Electric powertrain Zero (local) emissions

demand flexible up to few hours

demand flexibility over hoursday(s) Energy storage over daysweeksmonths

demand flexibility add measures

LBST

201

5-12

-18

EV Overhead

line

BEV Charging

PTG Hydrogen

PTG Methane

PTL Gasoline Diesel

Efficiency Propulsion+Upstream

Storage density amp Demand flexibility

21

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

22

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Conclusions from the FVV Future Fuel study in a nutshell

Transportation demand development (pkm tkm) is strongest driver for fuelelectricity demand

PtX fuel costs could half between 2015 and 2050 PtL imports ~20 lower in cost Further cost reductions are subject to location-specific business cases

PtX costs are dominated by electricity costs which strongly depends on the fuel choice (H2 CH4 PTL) and associated plant efficiencies

Fuel distribution infrastructure costs are negligible compared to the upstream investments required for any of the scenarios analysed

Cumulated investments for Energiewende (energy transition) in the transportation sector seem manageable for any of the scenarios analysed

All scenarios analysed will probably exceed technicalacceptable renewable electricity potentials in Germany Import of PtL (if any) is likely for cost reasons

Transport must get more electric with regard to the fuel and the propulsion system

23 pkm ∙ person kilometre tkm ∙ tonne kilometre PtX ∙ Power-to-anything PtL ∙ Power-to-liquids

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Literature

P Schmidt W Zittel W Weindorf T Raksha (LBST)

Renewables in Transport 2050 ndash Empowering a sustainable mobility future with zero emission fuels from renewable electricity ndash Europe and Germany

Research Association for Combustion Engines eV (ed)

FVV-Report 1086 2016

Download

httpwwwfvv-netdeendownloadrenewables-in-transport-2050renewables-in-transport-2050html

24

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

LBST Experts

Patrick Schmidt (Dipl-Ing)

T +49 (0)89 608110-36 E PatrickSchmidtLBSTde

Dr Werner Zittel

Werner Weindorf (Dipl-Ing)

Tetyana Raksha (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH

Daimlerstr 15 85521 MunichOttobrunn Germany httpwwwlbstde

25

Acknowledgement

This study was financed by the FVV and supported by members of the FVV Working Group laquoFuture Fuelsraquo

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

ANNEX

26

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical renewable power generation potentials

27

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany and EU-28

Germany and the EU have (very) high technical renewable electricity potentials

ndash DE ~1000 TWha potential vs ~500 TWh net electricity consumption

ndash EU ~11000 TWha potential vs ~2800 TWh net electricity consumption

Only ~11 (DE) and ~6 (EU28) if this potentials are currently used for renewable power production

The limits to renewable power growth seem to be more of an acceptance issue than costs

[ISE 2015] states PV electricity production costs of 2-4 euroctkWh in Southern and Central Europe by 2050

Renewable power potentials assessed for solarthermal power plants could also be exploited with photovoltaics

28

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany (bars can be stacked)

29

0

500

1000

1500

2000

2500

3000

Windonshore Windoffshore PV Hydro Geothermal

Tech

nic

al p

ote

nti

al (

TWh

yr)

Net electricity consumption 2014 521 TWhyr

Lud

wig

-Bouml

lko

w-S

yste

mte

chn

ik G

mb

H (

LBST

) 2

01

5-1

0-0

5

Maximum

Minimum

Bandwidth for technical renewableenergy potentials

Assumption in this study

1000 TWhyr

Potential already exploited

Data [BMU 2010] [BMU 2012] [BWE 2013] [ISE 2015] [IWES_PV 2012] [IWES 2012] [Quaschning 2013] [TAB 2003] [UBA 2013] 2014 data [AGEB 2015] provisional as per 082015 2014 data [BDEW 2015] provisional as per 082015

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

CO2 avoidance costs

30

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

1800

2000G

aso

line

kero

sen

ed

iese

l

EE-P

tL m

eth

ano

l ro

ute

EE-P

tL F

T ro

ute

EE-P

tL S

OEC

met

han

ol r

ou

te

EE-P

tL S

OEC

-FT

rou

te

EE-C

H4

(C

NG

)

EE-C

H4

(LN

G)

EE-C

H4

(C

NG

) SO

EC

EE-C

H4

(LN

G)

SOEC

EE-C

GH

2 (

on

site

)

Elec

tric

ity

for

BEV

Liquid fuelsreference

Liquid fuels (PtL) Gaseous fuels (PtG) Electricity

FOSSIL RENEWABLE

GH

G a

void

ance

co

sts

(eurot

CO

2e

qu

ival

en

t)

2015 2020 2030 2040 2050

LBST

20

15

-12

-22

Benchmarks Fuels from

crude oil(0 eurot CO2)

-58-57

-67 -67

-58

-61

-62

-65-67

-23

CO2 avoidance costs well-to-tank [eurot CO2-eq] for PtX in DE

31

Least-cost short-term Electricity

Least-cost long-term Electricity and CGH2

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Efficiency vs renewables integration (Scaling indicativefor educational purpose)

Trade-off between efficiency and renewable power integration (ldquoSystemdienlichkeitrdquo)

Robust option Hydrogen

Sole option providing zero well-to-wheel emissions AND long-term energy storage Hydrogen

BEV battery-electric vehicle EV electric vehicle DSM demand-side management PTG power-to-gas PTL power-to-liquids

Electric powertrain Zero (local) emissions

demand flexible up to few hours

demand flexibility over hoursday(s) Energy storage over daysweeksmonths

demand flexibility add measures

LBST

201

5-12

-18

EV Overhead

line

BEV Charging

PTG Hydrogen

PTG Methane

PTL Gasoline Diesel

Efficiency Propulsion+Upstream

Storage density amp Demand flexibility

21

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

22

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Conclusions from the FVV Future Fuel study in a nutshell

Transportation demand development (pkm tkm) is strongest driver for fuelelectricity demand

PtX fuel costs could half between 2015 and 2050 PtL imports ~20 lower in cost Further cost reductions are subject to location-specific business cases

PtX costs are dominated by electricity costs which strongly depends on the fuel choice (H2 CH4 PTL) and associated plant efficiencies

Fuel distribution infrastructure costs are negligible compared to the upstream investments required for any of the scenarios analysed

Cumulated investments for Energiewende (energy transition) in the transportation sector seem manageable for any of the scenarios analysed

All scenarios analysed will probably exceed technicalacceptable renewable electricity potentials in Germany Import of PtL (if any) is likely for cost reasons

Transport must get more electric with regard to the fuel and the propulsion system

23 pkm ∙ person kilometre tkm ∙ tonne kilometre PtX ∙ Power-to-anything PtL ∙ Power-to-liquids

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Literature

P Schmidt W Zittel W Weindorf T Raksha (LBST)

Renewables in Transport 2050 ndash Empowering a sustainable mobility future with zero emission fuels from renewable electricity ndash Europe and Germany

Research Association for Combustion Engines eV (ed)

FVV-Report 1086 2016

Download

httpwwwfvv-netdeendownloadrenewables-in-transport-2050renewables-in-transport-2050html

24

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

LBST Experts

Patrick Schmidt (Dipl-Ing)

T +49 (0)89 608110-36 E PatrickSchmidtLBSTde

Dr Werner Zittel

Werner Weindorf (Dipl-Ing)

Tetyana Raksha (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH

Daimlerstr 15 85521 MunichOttobrunn Germany httpwwwlbstde

25

Acknowledgement

This study was financed by the FVV and supported by members of the FVV Working Group laquoFuture Fuelsraquo

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

ANNEX

26

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical renewable power generation potentials

27

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany and EU-28

Germany and the EU have (very) high technical renewable electricity potentials

ndash DE ~1000 TWha potential vs ~500 TWh net electricity consumption

ndash EU ~11000 TWha potential vs ~2800 TWh net electricity consumption

Only ~11 (DE) and ~6 (EU28) if this potentials are currently used for renewable power production

The limits to renewable power growth seem to be more of an acceptance issue than costs

[ISE 2015] states PV electricity production costs of 2-4 euroctkWh in Southern and Central Europe by 2050

Renewable power potentials assessed for solarthermal power plants could also be exploited with photovoltaics

28

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany (bars can be stacked)

29

0

500

1000

1500

2000

2500

3000

Windonshore Windoffshore PV Hydro Geothermal

Tech

nic

al p

ote

nti

al (

TWh

yr)

Net electricity consumption 2014 521 TWhyr

Lud

wig

-Bouml

lko

w-S

yste

mte

chn

ik G

mb

H (

LBST

) 2

01

5-1

0-0

5

Maximum

Minimum

Bandwidth for technical renewableenergy potentials

Assumption in this study

1000 TWhyr

Potential already exploited

Data [BMU 2010] [BMU 2012] [BWE 2013] [ISE 2015] [IWES_PV 2012] [IWES 2012] [Quaschning 2013] [TAB 2003] [UBA 2013] 2014 data [AGEB 2015] provisional as per 082015 2014 data [BDEW 2015] provisional as per 082015

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

CO2 avoidance costs

30

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

1800

2000G

aso

line

kero

sen

ed

iese

l

EE-P

tL m

eth

ano

l ro

ute

EE-P

tL F

T ro

ute

EE-P

tL S

OEC

met

han

ol r

ou

te

EE-P

tL S

OEC

-FT

rou

te

EE-C

H4

(C

NG

)

EE-C

H4

(LN

G)

EE-C

H4

(C

NG

) SO

EC

EE-C

H4

(LN

G)

SOEC

EE-C

GH

2 (

on

site

)

Elec

tric

ity

for

BEV

Liquid fuelsreference

Liquid fuels (PtL) Gaseous fuels (PtG) Electricity

FOSSIL RENEWABLE

GH

G a

void

ance

co

sts

(eurot

CO

2e

qu

ival

en

t)

2015 2020 2030 2040 2050

LBST

20

15

-12

-22

Benchmarks Fuels from

crude oil(0 eurot CO2)

-58-57

-67 -67

-58

-61

-62

-65-67

-23

CO2 avoidance costs well-to-tank [eurot CO2-eq] for PtX in DE

31

Least-cost short-term Electricity

Least-cost long-term Electricity and CGH2

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Agenda

1 Motivation and approach

2 Scenarios

3 Results

Greenhouse gas emissions

Energy demand

Cumulated investments

4 Conclusions

22

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Conclusions from the FVV Future Fuel study in a nutshell

Transportation demand development (pkm tkm) is strongest driver for fuelelectricity demand

PtX fuel costs could half between 2015 and 2050 PtL imports ~20 lower in cost Further cost reductions are subject to location-specific business cases

PtX costs are dominated by electricity costs which strongly depends on the fuel choice (H2 CH4 PTL) and associated plant efficiencies

Fuel distribution infrastructure costs are negligible compared to the upstream investments required for any of the scenarios analysed

Cumulated investments for Energiewende (energy transition) in the transportation sector seem manageable for any of the scenarios analysed

All scenarios analysed will probably exceed technicalacceptable renewable electricity potentials in Germany Import of PtL (if any) is likely for cost reasons

Transport must get more electric with regard to the fuel and the propulsion system

23 pkm ∙ person kilometre tkm ∙ tonne kilometre PtX ∙ Power-to-anything PtL ∙ Power-to-liquids

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Literature

P Schmidt W Zittel W Weindorf T Raksha (LBST)

Renewables in Transport 2050 ndash Empowering a sustainable mobility future with zero emission fuels from renewable electricity ndash Europe and Germany

Research Association for Combustion Engines eV (ed)

FVV-Report 1086 2016

Download

httpwwwfvv-netdeendownloadrenewables-in-transport-2050renewables-in-transport-2050html

24

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

LBST Experts

Patrick Schmidt (Dipl-Ing)

T +49 (0)89 608110-36 E PatrickSchmidtLBSTde

Dr Werner Zittel

Werner Weindorf (Dipl-Ing)

Tetyana Raksha (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH

Daimlerstr 15 85521 MunichOttobrunn Germany httpwwwlbstde

25

Acknowledgement

This study was financed by the FVV and supported by members of the FVV Working Group laquoFuture Fuelsraquo

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

ANNEX

26

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical renewable power generation potentials

27

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany and EU-28

Germany and the EU have (very) high technical renewable electricity potentials

ndash DE ~1000 TWha potential vs ~500 TWh net electricity consumption

ndash EU ~11000 TWha potential vs ~2800 TWh net electricity consumption

Only ~11 (DE) and ~6 (EU28) if this potentials are currently used for renewable power production

The limits to renewable power growth seem to be more of an acceptance issue than costs

[ISE 2015] states PV electricity production costs of 2-4 euroctkWh in Southern and Central Europe by 2050

Renewable power potentials assessed for solarthermal power plants could also be exploited with photovoltaics

28

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany (bars can be stacked)

29

0

500

1000

1500

2000

2500

3000

Windonshore Windoffshore PV Hydro Geothermal

Tech

nic

al p

ote

nti

al (

TWh

yr)

Net electricity consumption 2014 521 TWhyr

Lud

wig

-Bouml

lko

w-S

yste

mte

chn

ik G

mb

H (

LBST

) 2

01

5-1

0-0

5

Maximum

Minimum

Bandwidth for technical renewableenergy potentials

Assumption in this study

1000 TWhyr

Potential already exploited

Data [BMU 2010] [BMU 2012] [BWE 2013] [ISE 2015] [IWES_PV 2012] [IWES 2012] [Quaschning 2013] [TAB 2003] [UBA 2013] 2014 data [AGEB 2015] provisional as per 082015 2014 data [BDEW 2015] provisional as per 082015

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

CO2 avoidance costs

30

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

1800

2000G

aso

line

kero

sen

ed

iese

l

EE-P

tL m

eth

ano

l ro

ute

EE-P

tL F

T ro

ute

EE-P

tL S

OEC

met

han

ol r

ou

te

EE-P

tL S

OEC

-FT

rou

te

EE-C

H4

(C

NG

)

EE-C

H4

(LN

G)

EE-C

H4

(C

NG

) SO

EC

EE-C

H4

(LN

G)

SOEC

EE-C

GH

2 (

on

site

)

Elec

tric

ity

for

BEV

Liquid fuelsreference

Liquid fuels (PtL) Gaseous fuels (PtG) Electricity

FOSSIL RENEWABLE

GH

G a

void

ance

co

sts

(eurot

CO

2e

qu

ival

en

t)

2015 2020 2030 2040 2050

LBST

20

15

-12

-22

Benchmarks Fuels from

crude oil(0 eurot CO2)

-58-57

-67 -67

-58

-61

-62

-65-67

-23

CO2 avoidance costs well-to-tank [eurot CO2-eq] for PtX in DE

31

Least-cost short-term Electricity

Least-cost long-term Electricity and CGH2

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Conclusions from the FVV Future Fuel study in a nutshell

Transportation demand development (pkm tkm) is strongest driver for fuelelectricity demand

PtX fuel costs could half between 2015 and 2050 PtL imports ~20 lower in cost Further cost reductions are subject to location-specific business cases

PtX costs are dominated by electricity costs which strongly depends on the fuel choice (H2 CH4 PTL) and associated plant efficiencies

Fuel distribution infrastructure costs are negligible compared to the upstream investments required for any of the scenarios analysed

Cumulated investments for Energiewende (energy transition) in the transportation sector seem manageable for any of the scenarios analysed

All scenarios analysed will probably exceed technicalacceptable renewable electricity potentials in Germany Import of PtL (if any) is likely for cost reasons

Transport must get more electric with regard to the fuel and the propulsion system

23 pkm ∙ person kilometre tkm ∙ tonne kilometre PtX ∙ Power-to-anything PtL ∙ Power-to-liquids

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Literature

P Schmidt W Zittel W Weindorf T Raksha (LBST)

Renewables in Transport 2050 ndash Empowering a sustainable mobility future with zero emission fuels from renewable electricity ndash Europe and Germany

Research Association for Combustion Engines eV (ed)

FVV-Report 1086 2016

Download

httpwwwfvv-netdeendownloadrenewables-in-transport-2050renewables-in-transport-2050html

24

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

LBST Experts

Patrick Schmidt (Dipl-Ing)

T +49 (0)89 608110-36 E PatrickSchmidtLBSTde

Dr Werner Zittel

Werner Weindorf (Dipl-Ing)

Tetyana Raksha (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH

Daimlerstr 15 85521 MunichOttobrunn Germany httpwwwlbstde

25

Acknowledgement

This study was financed by the FVV and supported by members of the FVV Working Group laquoFuture Fuelsraquo

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

ANNEX

26

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical renewable power generation potentials

27

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany and EU-28

Germany and the EU have (very) high technical renewable electricity potentials

ndash DE ~1000 TWha potential vs ~500 TWh net electricity consumption

ndash EU ~11000 TWha potential vs ~2800 TWh net electricity consumption

Only ~11 (DE) and ~6 (EU28) if this potentials are currently used for renewable power production

The limits to renewable power growth seem to be more of an acceptance issue than costs

[ISE 2015] states PV electricity production costs of 2-4 euroctkWh in Southern and Central Europe by 2050

Renewable power potentials assessed for solarthermal power plants could also be exploited with photovoltaics

28

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany (bars can be stacked)

29

0

500

1000

1500

2000

2500

3000

Windonshore Windoffshore PV Hydro Geothermal

Tech

nic

al p

ote

nti

al (

TWh

yr)

Net electricity consumption 2014 521 TWhyr

Lud

wig

-Bouml

lko

w-S

yste

mte

chn

ik G

mb

H (

LBST

) 2

01

5-1

0-0

5

Maximum

Minimum

Bandwidth for technical renewableenergy potentials

Assumption in this study

1000 TWhyr

Potential already exploited

Data [BMU 2010] [BMU 2012] [BWE 2013] [ISE 2015] [IWES_PV 2012] [IWES 2012] [Quaschning 2013] [TAB 2003] [UBA 2013] 2014 data [AGEB 2015] provisional as per 082015 2014 data [BDEW 2015] provisional as per 082015

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

CO2 avoidance costs

30

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

1800

2000G

aso

line

kero

sen

ed

iese

l

EE-P

tL m

eth

ano

l ro

ute

EE-P

tL F

T ro

ute

EE-P

tL S

OEC

met

han

ol r

ou

te

EE-P

tL S

OEC

-FT

rou

te

EE-C

H4

(C

NG

)

EE-C

H4

(LN

G)

EE-C

H4

(C

NG

) SO

EC

EE-C

H4

(LN

G)

SOEC

EE-C

GH

2 (

on

site

)

Elec

tric

ity

for

BEV

Liquid fuelsreference

Liquid fuels (PtL) Gaseous fuels (PtG) Electricity

FOSSIL RENEWABLE

GH

G a

void

ance

co

sts

(eurot

CO

2e

qu

ival

en

t)

2015 2020 2030 2040 2050

LBST

20

15

-12

-22

Benchmarks Fuels from

crude oil(0 eurot CO2)

-58-57

-67 -67

-58

-61

-62

-65-67

-23

CO2 avoidance costs well-to-tank [eurot CO2-eq] for PtX in DE

31

Least-cost short-term Electricity

Least-cost long-term Electricity and CGH2

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Literature

P Schmidt W Zittel W Weindorf T Raksha (LBST)

Renewables in Transport 2050 ndash Empowering a sustainable mobility future with zero emission fuels from renewable electricity ndash Europe and Germany

Research Association for Combustion Engines eV (ed)

FVV-Report 1086 2016

Download

httpwwwfvv-netdeendownloadrenewables-in-transport-2050renewables-in-transport-2050html

24

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

LBST Experts

Patrick Schmidt (Dipl-Ing)

T +49 (0)89 608110-36 E PatrickSchmidtLBSTde

Dr Werner Zittel

Werner Weindorf (Dipl-Ing)

Tetyana Raksha (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH

Daimlerstr 15 85521 MunichOttobrunn Germany httpwwwlbstde

25

Acknowledgement

This study was financed by the FVV and supported by members of the FVV Working Group laquoFuture Fuelsraquo

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

ANNEX

26

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical renewable power generation potentials

27

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany and EU-28

Germany and the EU have (very) high technical renewable electricity potentials

ndash DE ~1000 TWha potential vs ~500 TWh net electricity consumption

ndash EU ~11000 TWha potential vs ~2800 TWh net electricity consumption

Only ~11 (DE) and ~6 (EU28) if this potentials are currently used for renewable power production

The limits to renewable power growth seem to be more of an acceptance issue than costs

[ISE 2015] states PV electricity production costs of 2-4 euroctkWh in Southern and Central Europe by 2050

Renewable power potentials assessed for solarthermal power plants could also be exploited with photovoltaics

28

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany (bars can be stacked)

29

0

500

1000

1500

2000

2500

3000

Windonshore Windoffshore PV Hydro Geothermal

Tech

nic

al p

ote

nti

al (

TWh

yr)

Net electricity consumption 2014 521 TWhyr

Lud

wig

-Bouml

lko

w-S

yste

mte

chn

ik G

mb

H (

LBST

) 2

01

5-1

0-0

5

Maximum

Minimum

Bandwidth for technical renewableenergy potentials

Assumption in this study

1000 TWhyr

Potential already exploited

Data [BMU 2010] [BMU 2012] [BWE 2013] [ISE 2015] [IWES_PV 2012] [IWES 2012] [Quaschning 2013] [TAB 2003] [UBA 2013] 2014 data [AGEB 2015] provisional as per 082015 2014 data [BDEW 2015] provisional as per 082015

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

CO2 avoidance costs

30

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

1800

2000G

aso

line

kero

sen

ed

iese

l

EE-P

tL m

eth

ano

l ro

ute

EE-P

tL F

T ro

ute

EE-P

tL S

OEC

met

han

ol r

ou

te

EE-P

tL S

OEC

-FT

rou

te

EE-C

H4

(C

NG

)

EE-C

H4

(LN

G)

EE-C

H4

(C

NG

) SO

EC

EE-C

H4

(LN

G)

SOEC

EE-C

GH

2 (

on

site

)

Elec

tric

ity

for

BEV

Liquid fuelsreference

Liquid fuels (PtL) Gaseous fuels (PtG) Electricity

FOSSIL RENEWABLE

GH

G a

void

ance

co

sts

(eurot

CO

2e

qu

ival

en

t)

2015 2020 2030 2040 2050

LBST

20

15

-12

-22

Benchmarks Fuels from

crude oil(0 eurot CO2)

-58-57

-67 -67

-58

-61

-62

-65-67

-23

CO2 avoidance costs well-to-tank [eurot CO2-eq] for PtX in DE

31

Least-cost short-term Electricity

Least-cost long-term Electricity and CGH2

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

LBST Experts

Patrick Schmidt (Dipl-Ing)

T +49 (0)89 608110-36 E PatrickSchmidtLBSTde

Dr Werner Zittel

Werner Weindorf (Dipl-Ing)

Tetyana Raksha (Dipl-Ing)

LBST Ludwig-Boumllkow-Systemtechnik GmbH

Daimlerstr 15 85521 MunichOttobrunn Germany httpwwwlbstde

25

Acknowledgement

This study was financed by the FVV and supported by members of the FVV Working Group laquoFuture Fuelsraquo

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

ANNEX

26

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical renewable power generation potentials

27

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany and EU-28

Germany and the EU have (very) high technical renewable electricity potentials

ndash DE ~1000 TWha potential vs ~500 TWh net electricity consumption

ndash EU ~11000 TWha potential vs ~2800 TWh net electricity consumption

Only ~11 (DE) and ~6 (EU28) if this potentials are currently used for renewable power production

The limits to renewable power growth seem to be more of an acceptance issue than costs

[ISE 2015] states PV electricity production costs of 2-4 euroctkWh in Southern and Central Europe by 2050

Renewable power potentials assessed for solarthermal power plants could also be exploited with photovoltaics

28

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany (bars can be stacked)

29

0

500

1000

1500

2000

2500

3000

Windonshore Windoffshore PV Hydro Geothermal

Tech

nic

al p

ote

nti

al (

TWh

yr)

Net electricity consumption 2014 521 TWhyr

Lud

wig

-Bouml

lko

w-S

yste

mte

chn

ik G

mb

H (

LBST

) 2

01

5-1

0-0

5

Maximum

Minimum

Bandwidth for technical renewableenergy potentials

Assumption in this study

1000 TWhyr

Potential already exploited

Data [BMU 2010] [BMU 2012] [BWE 2013] [ISE 2015] [IWES_PV 2012] [IWES 2012] [Quaschning 2013] [TAB 2003] [UBA 2013] 2014 data [AGEB 2015] provisional as per 082015 2014 data [BDEW 2015] provisional as per 082015

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

CO2 avoidance costs

30

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

1800

2000G

aso

line

kero

sen

ed

iese

l

EE-P

tL m

eth

ano

l ro

ute

EE-P

tL F

T ro

ute

EE-P

tL S

OEC

met

han

ol r

ou

te

EE-P

tL S

OEC

-FT

rou

te

EE-C

H4

(C

NG

)

EE-C

H4

(LN

G)

EE-C

H4

(C

NG

) SO

EC

EE-C

H4

(LN

G)

SOEC

EE-C

GH

2 (

on

site

)

Elec

tric

ity

for

BEV

Liquid fuelsreference

Liquid fuels (PtL) Gaseous fuels (PtG) Electricity

FOSSIL RENEWABLE

GH

G a

void

ance

co

sts

(eurot

CO

2e

qu

ival

en

t)

2015 2020 2030 2040 2050

LBST

20

15

-12

-22

Benchmarks Fuels from

crude oil(0 eurot CO2)

-58-57

-67 -67

-58

-61

-62

-65-67

-23

CO2 avoidance costs well-to-tank [eurot CO2-eq] for PtX in DE

31

Least-cost short-term Electricity

Least-cost long-term Electricity and CGH2

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

ANNEX

26

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical renewable power generation potentials

27

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany and EU-28

Germany and the EU have (very) high technical renewable electricity potentials

ndash DE ~1000 TWha potential vs ~500 TWh net electricity consumption

ndash EU ~11000 TWha potential vs ~2800 TWh net electricity consumption

Only ~11 (DE) and ~6 (EU28) if this potentials are currently used for renewable power production

The limits to renewable power growth seem to be more of an acceptance issue than costs

[ISE 2015] states PV electricity production costs of 2-4 euroctkWh in Southern and Central Europe by 2050

Renewable power potentials assessed for solarthermal power plants could also be exploited with photovoltaics

28

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany (bars can be stacked)

29

0

500

1000

1500

2000

2500

3000

Windonshore Windoffshore PV Hydro Geothermal

Tech

nic

al p

ote

nti

al (

TWh

yr)

Net electricity consumption 2014 521 TWhyr

Lud

wig

-Bouml

lko

w-S

yste

mte

chn

ik G

mb

H (

LBST

) 2

01

5-1

0-0

5

Maximum

Minimum

Bandwidth for technical renewableenergy potentials

Assumption in this study

1000 TWhyr

Potential already exploited

Data [BMU 2010] [BMU 2012] [BWE 2013] [ISE 2015] [IWES_PV 2012] [IWES 2012] [Quaschning 2013] [TAB 2003] [UBA 2013] 2014 data [AGEB 2015] provisional as per 082015 2014 data [BDEW 2015] provisional as per 082015

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

CO2 avoidance costs

30

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

1800

2000G

aso

line

kero

sen

ed

iese

l

EE-P

tL m

eth

ano

l ro

ute

EE-P

tL F

T ro

ute

EE-P

tL S

OEC

met

han

ol r

ou

te

EE-P

tL S

OEC

-FT

rou

te

EE-C

H4

(C

NG

)

EE-C

H4

(LN

G)

EE-C

H4

(C

NG

) SO

EC

EE-C

H4

(LN

G)

SOEC

EE-C

GH

2 (

on

site

)

Elec

tric

ity

for

BEV

Liquid fuelsreference

Liquid fuels (PtL) Gaseous fuels (PtG) Electricity

FOSSIL RENEWABLE

GH

G a

void

ance

co

sts

(eurot

CO

2e

qu

ival

en

t)

2015 2020 2030 2040 2050

LBST

20

15

-12

-22

Benchmarks Fuels from

crude oil(0 eurot CO2)

-58-57

-67 -67

-58

-61

-62

-65-67

-23

CO2 avoidance costs well-to-tank [eurot CO2-eq] for PtX in DE

31

Least-cost short-term Electricity

Least-cost long-term Electricity and CGH2

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Technical renewable power generation potentials

27

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany and EU-28

Germany and the EU have (very) high technical renewable electricity potentials

ndash DE ~1000 TWha potential vs ~500 TWh net electricity consumption

ndash EU ~11000 TWha potential vs ~2800 TWh net electricity consumption

Only ~11 (DE) and ~6 (EU28) if this potentials are currently used for renewable power production

The limits to renewable power growth seem to be more of an acceptance issue than costs

[ISE 2015] states PV electricity production costs of 2-4 euroctkWh in Southern and Central Europe by 2050

Renewable power potentials assessed for solarthermal power plants could also be exploited with photovoltaics

28

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany (bars can be stacked)

29

0

500

1000

1500

2000

2500

3000

Windonshore Windoffshore PV Hydro Geothermal

Tech

nic

al p

ote

nti

al (

TWh

yr)

Net electricity consumption 2014 521 TWhyr

Lud

wig

-Bouml

lko

w-S

yste

mte

chn

ik G

mb

H (

LBST

) 2

01

5-1

0-0

5

Maximum

Minimum

Bandwidth for technical renewableenergy potentials

Assumption in this study

1000 TWhyr

Potential already exploited

Data [BMU 2010] [BMU 2012] [BWE 2013] [ISE 2015] [IWES_PV 2012] [IWES 2012] [Quaschning 2013] [TAB 2003] [UBA 2013] 2014 data [AGEB 2015] provisional as per 082015 2014 data [BDEW 2015] provisional as per 082015

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

CO2 avoidance costs

30

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

1800

2000G

aso

line

kero

sen

ed

iese

l

EE-P

tL m

eth

ano

l ro

ute

EE-P

tL F

T ro

ute

EE-P

tL S

OEC

met

han

ol r

ou

te

EE-P

tL S

OEC

-FT

rou

te

EE-C

H4

(C

NG

)

EE-C

H4

(LN

G)

EE-C

H4

(C

NG

) SO

EC

EE-C

H4

(LN

G)

SOEC

EE-C

GH

2 (

on

site

)

Elec

tric

ity

for

BEV

Liquid fuelsreference

Liquid fuels (PtL) Gaseous fuels (PtG) Electricity

FOSSIL RENEWABLE

GH

G a

void

ance

co

sts

(eurot

CO

2e

qu

ival

en

t)

2015 2020 2030 2040 2050

LBST

20

15

-12

-22

Benchmarks Fuels from

crude oil(0 eurot CO2)

-58-57

-67 -67

-58

-61

-62

-65-67

-23

CO2 avoidance costs well-to-tank [eurot CO2-eq] for PtX in DE

31

Least-cost short-term Electricity

Least-cost long-term Electricity and CGH2

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany and EU-28

Germany and the EU have (very) high technical renewable electricity potentials

ndash DE ~1000 TWha potential vs ~500 TWh net electricity consumption

ndash EU ~11000 TWha potential vs ~2800 TWh net electricity consumption

Only ~11 (DE) and ~6 (EU28) if this potentials are currently used for renewable power production

The limits to renewable power growth seem to be more of an acceptance issue than costs

[ISE 2015] states PV electricity production costs of 2-4 euroctkWh in Southern and Central Europe by 2050

Renewable power potentials assessed for solarthermal power plants could also be exploited with photovoltaics

28

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany (bars can be stacked)

29

0

500

1000

1500

2000

2500

3000

Windonshore Windoffshore PV Hydro Geothermal

Tech

nic

al p

ote

nti

al (

TWh

yr)

Net electricity consumption 2014 521 TWhyr

Lud

wig

-Bouml

lko

w-S

yste

mte

chn

ik G

mb

H (

LBST

) 2

01

5-1

0-0

5

Maximum

Minimum

Bandwidth for technical renewableenergy potentials

Assumption in this study

1000 TWhyr

Potential already exploited

Data [BMU 2010] [BMU 2012] [BWE 2013] [ISE 2015] [IWES_PV 2012] [IWES 2012] [Quaschning 2013] [TAB 2003] [UBA 2013] 2014 data [AGEB 2015] provisional as per 082015 2014 data [BDEW 2015] provisional as per 082015

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

CO2 avoidance costs

30

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

1800

2000G

aso

line

kero

sen

ed

iese

l

EE-P

tL m

eth

ano

l ro

ute

EE-P

tL F

T ro

ute

EE-P

tL S

OEC

met

han

ol r

ou

te

EE-P

tL S

OEC

-FT

rou

te

EE-C

H4

(C

NG

)

EE-C

H4

(LN

G)

EE-C

H4

(C

NG

) SO

EC

EE-C

H4

(LN

G)

SOEC

EE-C

GH

2 (

on

site

)

Elec

tric

ity

for

BEV

Liquid fuelsreference

Liquid fuels (PtL) Gaseous fuels (PtG) Electricity

FOSSIL RENEWABLE

GH

G a

void

ance

co

sts

(eurot

CO

2e

qu

ival

en

t)

2015 2020 2030 2040 2050

LBST

20

15

-12

-22

Benchmarks Fuels from

crude oil(0 eurot CO2)

-58-57

-67 -67

-58

-61

-62

-65-67

-23

CO2 avoidance costs well-to-tank [eurot CO2-eq] for PtX in DE

31

Least-cost short-term Electricity

Least-cost long-term Electricity and CGH2

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

Renewable electricity potentials in Germany (bars can be stacked)

29

0

500

1000

1500

2000

2500

3000

Windonshore Windoffshore PV Hydro Geothermal

Tech

nic

al p

ote

nti

al (

TWh

yr)

Net electricity consumption 2014 521 TWhyr

Lud

wig

-Bouml

lko

w-S

yste

mte

chn

ik G

mb

H (

LBST

) 2

01

5-1

0-0

5

Maximum

Minimum

Bandwidth for technical renewableenergy potentials

Assumption in this study

1000 TWhyr

Potential already exploited

Data [BMU 2010] [BMU 2012] [BWE 2013] [ISE 2015] [IWES_PV 2012] [IWES 2012] [Quaschning 2013] [TAB 2003] [UBA 2013] 2014 data [AGEB 2015] provisional as per 082015 2014 data [BDEW 2015] provisional as per 082015

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

CO2 avoidance costs

30

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

1800

2000G

aso

line

kero

sen

ed

iese

l

EE-P

tL m

eth

ano

l ro

ute

EE-P

tL F

T ro

ute

EE-P

tL S

OEC

met

han

ol r

ou

te

EE-P

tL S

OEC

-FT

rou

te

EE-C

H4

(C

NG

)

EE-C

H4

(LN

G)

EE-C

H4

(C

NG

) SO

EC

EE-C

H4

(LN

G)

SOEC

EE-C

GH

2 (

on

site

)

Elec

tric

ity

for

BEV

Liquid fuelsreference

Liquid fuels (PtL) Gaseous fuels (PtG) Electricity

FOSSIL RENEWABLE

GH

G a

void

ance

co

sts

(eurot

CO

2e

qu

ival

en

t)

2015 2020 2030 2040 2050

LBST

20

15

-12

-22

Benchmarks Fuels from

crude oil(0 eurot CO2)

-58-57

-67 -67

-58

-61

-62

-65-67

-23

CO2 avoidance costs well-to-tank [eurot CO2-eq] for PtX in DE

31

Least-cost short-term Electricity

Least-cost long-term Electricity and CGH2

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

CO2 avoidance costs

30

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

1800

2000G

aso

line

kero

sen

ed

iese

l

EE-P

tL m

eth

ano

l ro

ute

EE-P

tL F

T ro

ute

EE-P

tL S

OEC

met

han

ol r

ou

te

EE-P

tL S

OEC

-FT

rou

te

EE-C

H4

(C

NG

)

EE-C

H4

(LN

G)

EE-C

H4

(C

NG

) SO

EC

EE-C

H4

(LN

G)

SOEC

EE-C

GH

2 (

on

site

)

Elec

tric

ity

for

BEV

Liquid fuelsreference

Liquid fuels (PtL) Gaseous fuels (PtG) Electricity

FOSSIL RENEWABLE

GH

G a

void

ance

co

sts

(eurot

CO

2e

qu

ival

en

t)

2015 2020 2030 2040 2050

LBST

20

15

-12

-22

Benchmarks Fuels from

crude oil(0 eurot CO2)

-58-57

-67 -67

-58

-61

-62

-65-67

-23

CO2 avoidance costs well-to-tank [eurot CO2-eq] for PtX in DE

31

Least-cost short-term Electricity

Least-cost long-term Electricity and CGH2

LBSTde 23 November 2016 Ludwig-Boumllkow-Systemtechnik GmbH

ludwig boumllkow

systemtechnik

0

200

400

600

800

1000

1200

1400

1600

1800

2000G

aso

line

kero

sen

ed

iese

l

EE-P

tL m

eth

ano

l ro

ute

EE-P

tL F

T ro

ute

EE-P

tL S

OEC

met

han

ol r

ou

te

EE-P

tL S

OEC

-FT

rou

te

EE-C

H4

(C

NG

)

EE-C

H4

(LN

G)

EE-C

H4

(C

NG

) SO

EC

EE-C

H4

(LN

G)

SOEC

EE-C

GH

2 (

on

site

)

Elec

tric

ity

for

BEV

Liquid fuelsreference

Liquid fuels (PtL) Gaseous fuels (PtG) Electricity

FOSSIL RENEWABLE

GH

G a

void

ance

co

sts

(eurot

CO

2e

qu

ival

en

t)

2015 2020 2030 2040 2050

LBST

20

15

-12

-22

Benchmarks Fuels from

crude oil(0 eurot CO2)

-58-57

-67 -67

-58

-61

-62

-65-67

-23

CO2 avoidance costs well-to-tank [eurot CO2-eq] for PtX in DE

31

Least-cost short-term Electricity

Least-cost long-term Electricity and CGH2


Recommended