+ All Categories
Home > Documents > Elektrische Antriebe mit dauermagneterregten Maschinen...

Elektrische Antriebe mit dauermagneterregten Maschinen...

Date post: 06-Feb-2018
Category:
Upload: nguyenxuyen
View: 304 times
Download: 23 times
Share this document with a friend
107
Elektrische Antriebe mit dauermagneterregten Maschinen im dynamischen sensorlosen Betrieb An der Fakultät für Elektrotechnik der Helmut-Schmidt-Universität Universität der Bundeswehr Hamburg zur Erlangung des akademischen Grades eines Doktor-Ingenieurs eingereichte DISSERTATION von Bassel Sahhary Hamburg 2008
Transcript
Page 1: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

Elektrische Antriebe mit dauermagneterregten Maschinen im dynamischen sensorlosen Betrieb

An der Fakultät für Elektrotechnik der Helmut-Schmidt-Universität

Universität der Bundeswehr Hamburg zur Erlangung des akademischen Grades eines Doktor-Ingenieurs

eingereichte

DISSERTATION

von

Bassel Sahhary

Hamburg 2008

Page 2: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

ii

Erstgutachter: Prof. Dr.-Ing. Ekkehard Bolte Helmut-Schmidt-Universität/ Universität der Bundeswehr Hamburg Professur für Elektrische Maschinen und Antriebe Zweitgutachter: Prof. Dr.-Ing. Joachim Horn Helmut-Schmidt-Universität/ Universität der Bundeswehr Hamburg

Professur für Regelungstechnik Vorsitzender: Prof. Dr.-Ing. Klaus F. Hoffmann

Helmut-Schmidt-Universität/ Universität der Bundeswehr Hamburg Professur für Leistungselektronik Tag der mündlichen Prüfung: 23.10.2008

Page 3: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

iii

Vorwort Die vorliegende Arbeit entstand während meiner wissenschaftlichen Tätigkeit an der Professur Elektrische Maschinen und Antriebe, der Helmut-Schmidt-Universität, Universität der Bundeswehr Hamburg. Mein ganz besonderer Dank gilt meinen Doktorvater, Herrn Prof. Dr.-Ing. E. Bolte für die Unterstützung und Förderung meiner Arbeit. Seine Hinweise und zahlreichen Ratschläge haben maßgeblich zum Gelingen dieser Arbeit beigetragen. Er hatte immer ein offenes Ohr für meine Wünsche und Probleme. Weiter danke auch ich Herrn Prof. Dr.-Ing. Joachim Horn für die freundliche Übernahme eines Gutachtens. Vielen Dank an Prof. Klaus F. Hoffmann für den Vorsitz und die Leitung meiner Promotionsprüfung. Ebenso bedanken möchte ich mich bei allen Mitarbeitern der Professur Elektrische Maschinen und Antriebe, die durch ein hervorragendes Arbeitsklima und weitere vielfältige Unterstützung zum Gelingen dieser Arbeit beigetragen haben. Insbesondere danke ich Herrn Dipl.–Ing. Klaus Schlüter und Herrn Norman Landskron für die vielen hilfreichen Diskussionen. Weiter danke ich Frau Stephanie Obal für ihre Hilfe während meiner Promotion. Die Unterstützung durch meine Familie kann nicht durch diese Worte aufgewogen werden. Trotzdem möchte ich meinen Eltern für ihre verlässliche Begleitung durch alle Höhen und Tiefen meines Lebens danken. Abschließend und von ganzem Herzen danke ich meiner Ehefrau Nsreen, für ihre endlose Geduld und ihre liebevolle Unterstützung, die mir in den vergangenen Jahren, während meiner Promotion, grenzenlos wichtig waren. Ich widme diese Arbeit auch ihr und meinen Söhnen Abdulrazzak, Noruldien und Bilal. Hamburg 2008

Page 4: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

iv

1. Problemstellung...............................................................................................

1

1.1 Systembeschreibung..........................................................................................

1

1.2 Stand der Technik bezüglich der Betriebsarten für dynamischen Betrieb........

1

1.3 Stand der Technik bezüglich “Sensorless“........................................................

2

1.4 Model Reference Adaptive Control (MRAC) ..................................................

2

2. Das mathematische Modell und die Betriebsarten permanentmagnet- erregter Synchronmaschinen (PMSM) .........................................................

3

2.1 Permanentmagneterregte Synchronmaschinen .................................................

3

2.2 Raumzeigerdarstellung und Koordinatensysteme ............................................

7

2.2.1 Raumzeigerdarstellung .....................................................................................

7

2.2.2 Koordinatensysteme .........................................................................................

8

2.3 Das mathematische Modell ..............................................................................

12

2.3.1 Grundlagen .......................................................................................................

12

2.3.2 Zusammenfassung der Systemgleichungen ......................................................

13

2.3.3 Spezialisierung auf den stationären Betrieb......................................................

14

2.4 Drehmoment- und Bewegungsgleichung .........................................................

16

2.5 Modell der Gleichstrommaschine .....................................................................

18

2.6 Betriebsarten der PMSM .................................................................................

20

3. Feldorientierte Regelung mit Positionssensor - Mathematische Modellierung ...................................................................................................

22

3.1 Regelungsmethoden der PMSM .......................................................................

22

3.2 Die feldorientierte Regelung ............................................................................

22

3.3 Stromregelung ..................................................................................................

26

3.3.1 Nichtlineare Stromregelungen ..........................................................................

27

3.3.1.1 Zweipunktregler ...............................................................................................

27

3.3.2 Lineare Stromregelungen ................................................................................. 29

Page 5: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

v

3.3.2.1 PI Stromregler als Wechselgrößenregelung ( , ,a cbi i i ) .....................................

29

3.3.2.2 PI Stromregler als Gleichgrößenregelung ( , qdi i ) ............................................

29

3.3.2.3 Vergleich zwischen Zweipunktregler und PI Stromregler...............................

30

3.3.3 Augenblickswertmessung mittels eines A/D-Wandlers ...................................

30

3.3.4 Entkopplung ......................................................................................................

32

3.3.5 Stromregelkreis .................................................................................................

35

3.4 Drehzahlregelung ..............................................................................................

37

3.4.1 Ermittlung der Winkelgeschwindigkeit ............................................................

37

3.4.2 Drehzahlregelkreis ............................................................................................

38

3.4.3 Maßnahmen zur Vermeidung des Regler-Windup bei PI-Reglern...................

40

3.5 Pulsweitmodulation durch Raumzeigermodulation ..........................................

40

3.5.1 Prinzip der Modulation .....................................................................................

42

3.6 Strom- und Drehzahlregelung mithilfe des Programms Matlab/Simulink .......

46

3.6.1 PI Drehzahlregler mit unterlagertem Zweipunktstromregler ...........................

46

3.6.2 PI Drehzahlregler mit unterlagertem PI Stromregler .......................................

48

4. Feldorientierte Regelung mit Positionssensor – Verifikation .....................

51

4.1 Realisierung der Strom- und Drehzahlregelung mit dem Echtzeitsystem Space 1103.........................................................................................................

51

4.2 Realisierung eines PI Drehzahlreglers mit unterlagertem Zweipunkstromregler.........................................................................................

55

4.2.1 Lastmoment ......................................................................................................

56

4.2.2 Vergleich mit den Simulationsergebnissen......................................................

57

4.3 Realisierung eines PI-Drehzahlreglers mit unterlagertem PI-Stromregler ......

57

5. Model Reference Adaptive Control (MRAC) ..............................................

59

Page 6: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

vi

5.1 Übersicht über sensorlose Verfahren ...............................................................

59

5.2 Adaptive Verfahren...........................................................................................

60

5.3 MRAC-Verfahren..............................................................................................

61

5.3.1 MRAC-Verfahren "Wirkleistung".....................................................................

63

5.4 Sensorlose Regelung mit MRAC-Simulationen .......................................

65

5.5 Messung der Strangspannungen .......................................................................

69

5.6 Realisierung des MRAC-Verfahrens mit gemessenen Spannungen ................

69

5.7 Realisierung des MRAC-Verfahrens mit Spannung-Sollwerte ........................

73

5.7.1 Auswirkung der Totzeit und des Spannungsabfalls .........................................

74

5.7.2 Messergebnisse..................................................................................................

78

5.8 Vergleich zwischen Simulation und Messung.............................................

81

5.9 Drehzahlregelung mit MRAC-Ersetzung der Spannungsmessung durch Rechenwerte .....................................................................................................

82

6. Zusammenfassung und Schlussfolgerung.....................................................

83

Anhang A Maschinendaten .....................................................................................

85

Anhang B Bestimmung des Massenträgheitsmoments für den Maschinensatz aus MBT210C, Messwelle und Pendelmaschine .................................

87

B1 Die Methode ............................................................................................

87

B2 Messung des Ankerwiderstandes der mit der PMSM gekoppelten Gleichstromnebenschlussmaschine .........................................................

89

B3 J-Berechnung für den untersuchten Maschinensatz ................................

91

B4 Ermittlung der Koeffizienten c und d .....................................................

93

B4.1 Auslaufversuch zur Bestimmung von c, d ...............................................

93

B4.2 Bestimmung von c, d für den Drehzahlbereich von 15 bis 45 RPM .......

93

B4.3 Bestimmung von c, d für den Drehzahlbereich von 12 bis 47 RPM .......

94

Formelzeichen

96

Literatur

99

Page 7: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

1

1. Problemstellung 1.1 Systembeschreibung Ein digitales Antriebssystem besteht aus einem Controller, einer Schnittstelle und einem

Umrichter sowie dem Motor, siehe Bild 1.1.

Um den Motor optimal zu betreiben, müssen bestimmte Algorithmen mithilfe von einem

Controller implementiert werden. Diese Algorithmen brauchen normalerweise die Messwerte

von Strömen und/oder Spannungen und/oder der Drehzahl; sie liefern die

Umrichteransteuerung durch sechs PWM-Signale. Um Entwicklungszeit zu sparen, müssen

die Controller, die im Bereich der Antriebstechnik verwendet werden, besondere Hardware-

Schnittstellen haben.

Bild 1.1. Grundstruktur eines digitalen Antriebsystems.

1.2 Stand der Technik bezüglich der Betriebsarten für dynamischen Betrieb

Das Ziel der feldorientierten Regelung (FOC ... field oriented control) für Drehstrom-

maschinen ist, eine entkoppelte Regelung von Fluss und Drehmoment zu erhalten, um ein

resultierendes Verhalten wie bei Gleichstromnebenschlussmaschinen, aufzuweisen. Dabei

werden die feldbildende d-Komponente und die drehmomentbildende q-Komponente separat

geregelt. Der Drehzahlregler beeinflusst den Sollwert für den drehmomentbildenden

Strom qi . Um die feldorientierte Regelung implementieren zu können, muss die Rotorlage

von einem Drehgeber an den Controller übermittelt werden, der dann den Strom entsprechend

einstellt.

Page 8: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

2

1.3 Stand der Technik bezüglich “Sensorless“

Heutzutage wird der Verzicht auf die Drehgeber in vielen Anwendungen häufig erwogen, da

sie die Zuverlässigkeit und die Robustheit der Antriebssysteme verringern und die Kosten u.

U. deutlich erhöhen. Darüber hinaus gibt es manchmal Schwierigkeiten bei der Montage des

Drehgebers. Um eine sensorlose feldorientierte Regelung implementieren zu können, gibt es

eine Vielzahl von Methoden, die mit mehr oder weniger großem Aufwand anwendbar sind.

Model Reference Adaptive Control (MRAC) ist eine der robusten Methoden, die für die

Schätzung der Motordrehzahl verwendet wird. MRAC wird in dieser Arbeit angewendet und

weiterentwickelt.

1.4 Model Reference Adaptive Control (MRAC) Das prinzipielle Vorgehen bei den adaptiven Verfahren ist der Vergleich von realen Daten des

betrachteten Systems mit Modelldaten. Die adaptiven Verfahren haben eine Rückkopplung

zur Verbesserung der geschätzten Größe, damit wird der Fehler zwischen den gemessenen

und geschätzten Größen genutzt, um das adaptive Modell (AM) dem Referenzmodell (RM)

anzupassen. Eine prinzipielle Anordnung eines solchen adaptiven Regelverfahrens ist im Bild

1.2 angegeben [8, Seite 556].

Bild 1.2. Grundstruktur eines MRAC-Verfahrens.

Page 9: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

3

2. Das mathematische Modell und die Betriebsarten permanentmagneterregter Synchronmaschinen (PMSM)

2.1 Permanentmagneterregte Synchronmaschinen Die normalen Synchronmaschinen haben einen dreiphasigen Stator und eine

Gleichspannungswicklung auf dem Rotor. Die Synchronmaschinen haben eine konstante

Drehzahl, die von der Frequenz der Spannungsversorgung und von der Polpaarzahl der

Ankerwicklung abhängig ist.

Wird die Rotorwicklung durch einen Permanentmagneten ersetzt, so spricht man von einer

permanentmagneterregten Synchronmaschine. Dieser Austausch hat viele Vorteile und

einige Nachteile.

Die Vorteile sind:

1. Die PMSM hat ein sehr gutes dynamisches Verhalten, da das Rotorträgheits-

moment klein sein kann.

2. Im Vergleich zu Asynchronmaschinen haben die PMSM Maschinen eine

kleinere Bauform bei gleichem Drehmoment.

3. Durch die Permanenterregung an Stelle der elektrischen Erregung wird eine

Gewichts- und Bauvolumenreduzierung ermöglicht.

4. Der Rotoraufbau wird robuster, Schleifringe entfallen.

5. Es entstehen keine Stromwärmeverluste.

Durch die Entfernung der Rotorwicklung kann der Wirkungsgrad der Maschine steigen. Weil

die Stromwärmeverluste im Stator konzentriert werden, wird die Kühlung der Maschine

einfacher [4, Seite 63].

Die Nachteile sind:

1. Veränderung des Erregerfeldes wird schwieriger.

2. Unter Umständen höhere Kosten.

Die permanentmagneterregten Synchronmaschinen sind weltweit in der Industrie verbreitet,

ganz besonders bei Kleinleistungsanwendungen. Das Bild 2.1 zeigt eine Klassifikation der

permanentmagneterregten Maschinen. Werden die permanentmagneterregten Maschinen

zusätzlich mit einem Anlaufkäfig ausgestattet, so spricht man von einem Linestart-Motor. Der

Motor wird direkt an die Netzspannung angeschlossen; der Hochlauf geschieht als

Page 10: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

4

Asynchronmotor. In der Nähe der Synchrondrehzahl erfolgt das Intrittfallen in den

Synchronismus und danach arbeitet er als Synchronmaschine am Netz [13, Seite 52].

Die Vorteile sind Selbstanlauf, guter Leistungsfaktor und hoher Wirkungsgrad.

Linestart-Motoren werden bei Antrieben mit hoher Betriebdauer und geringer Leistung

(Pumpen, Lüfter, etc.) eingesetzt [13, Seite 52].

Bezüglich der umrichtergespeisten permanentmagneterregten Maschinen werden zwei Typen

unterschieden:

sinusförmige Maschinen

trapezförmige Maschinen

Das Bild 2.2 zeigt die Magnetanbringung für verschiedene Rotoren.

Bild 2.1. Klassifikation der permanentmagneterregten Maschinen.

Die Magnete können entweder auf den Rotor geklebt werden(Surface PM, SPM) oder in den

Rotor eingelassen werden (Surface inset PM, SIPM), siehe Bild (2.2a) und (2.2b). Diese

beiden Arten werden für niedrige Geschwindigkeiten angewendet und haben einen gleichen

Wert für die Induktivitäten dL und qL .

Bei Motoren für hohe Drehzahlen werden die Magnete mechanisch fixiert und mit einer

Umhüllung gesichert.

Der Rotorbauform der IPMSM Maschine besitzt Magnete, welche in den Rotor vergraben

sind, Bild (2.2c) und (2.2d). Diese Maschinen werden für Hochgeschwindigkeiten benutzt.

Die Induktivitätswerte sind hier unterschiedlich ( qdL L ) [5, Seiten 89-94], [11, Seiten 519-

521].

Page 11: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

5

Der Rotorbauform des trapezförmigen Maschinen (Brushless DC Motors, BLDC) ist ähnlich

wie die SPMSM.

Bild 2.2. Verschiedene Magnetanordnungen im Rotor von permanentmagneterregten Synchronmaschinen.

Gemäß der Form der Polradspannung (EMK) werden die zwei Gruppen unterschieden [39,

Seite 10.101], [40, Kapitel 10, Seite 4], [44, Seite 258], [45, Seiten 891 und 1037-1045]:

1. sinusförmiger Motor, der als permanentmagneterregter Synchronmotor

(PMSM) bezeichnet wird.

2. trapezförmiger Motor, der als permanentmagneterregter bürstenloser DC-

Motor (BLDC) bezeichnet wird.

Die sinusförmigen Motoren haben die folgenden Eigenschaften [7, Seite 7], [10, Seite 131],

[43, Seite 404], [45, Seiten 1037-1045]:

Die Flussdichte im Luftspalt ist sinusförmig verteilt und folglich hat die

Polradspannung eine sinusförmige Form.

Die fließenden Ströme sind sinusförmig.

Die Wicklungen im Stator sind sinusförmig verteilt.

Page 12: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

6

Im Gegensatz dazu haben die trapezförmigen Motoren eine trapezförmig verteilte Flussdichte,

trapezförmige Ströme und konzentrierte Wicklungen. Somit haben sie eine trapezförmige

Polradspannung [38, Seiten 222-225].

Ob die Wicklungen sinusförmig verteilt sind, kann festgestellt werden, wenn die Maschine

angetrieben wird. Ist die induzierte Spannung sinusförmig, so spricht man von PMSM. Ist die

induzierte Spannung trapezförmig, so spricht man von BLDC.

In die Motorwicklungen von BLDC Maschinen werden blockförmige Ströme eingeprägt. Bei

der Blockkommutierung werden immer zwei Phasen (d.h. zwei Transistoren sind

gleichzeitig eingeschaltet) bestromt. Bauartbedingt entsteht eine rechteckförmige Verteilung

der Luftspaltinduktion. Dies hat eine konstante Drehmomentbildung zur Folge. Bei der

Blockkommutierung erfolgt die Ansteuerung des Umrichters über einen Rotorgeber, der aus

Hallsensoren, Lichtschranken oder Ähnlichem aufgebaut sein kann[47, Seiten 16-17].

Die Kommutierungenfolge von PMSM Maschinen erfolgt nach dem gleichen Prinzip wie bei

der Blockkommutierung. Unterschied ist, dass jetzt alle drei Phasen gleichzeitig bestromt

werden, und dass der Strom, die induzierte Spannung und der Fluss sinusförmig sind.

Dadurch wird eine Drehmoment- und Drehzahlkonstanz auch bei kleinen Drehzahlen erreicht.

Die sinusbestromten Motoren werden in der Regel mit Resolvern als Gebersystem

ausgestattet. Resolver sind zwar aufwendiger in der Auswertung, können aber aufgrund der

digitalen Auswertung eine höhere Auflösung erzielen [47, Seiten 18-19].

Die Tabelle 2.1 und das Bild 2.3 zeigen die unterschiedlichen Eigenschaften der beiden Arten

[33, Seiten 91-92].

PMSM BLDC

Flussdichte im Raum sinusförmige Verteilung rechteckige Verteilung

Polradspannung (Back-EMF) sinusförmig trapezförmig

Statorstrom sinusförmig rechteckig

Die gesamte Leistung konstant konstant

Drehmoment konstant konstant

Tabelle 2.1. Die Eigenschaften von der PMSM und BLDC.

Page 13: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

7

Bild 2.3. Vergleich der Eigenschaften von PMSM und BLDC.

2.2 Raumzeigerdarstellung und Koordinatensysteme 2.2.1 Raumzeigerdarstellung Bei dreiphasigen Systemen wird heute im Allgemeinen die Raumzeigerdarstellung verwendet.

Der Statorstromraumzeiger ergibt sich aus der Überlagerung der einzelnen Strangströme.

22( )3 a b ci t i a i a i . (2.1)

Der Drehzeiger a ergibt sich bei dreisträngigen Wicklungssystemen zu

23 2 2 1 3cos sin

3 3 2 2j

a e j j , (2.2)

222 3 2 2 1 3cos2 sin 23 3 2 2

ja e j j

. (2.3)

Analog zur obigen Definition der Statorstromraumzeiger lassen sich die Strangspannungen in

einen komplexen Spannungsraumzeiger überführen zu

22( )3 a b cu t u a u a u . (2.4)

Da die dreiphasige Statorwicklung als ideal sinusförmig angeordnet angenommen wird, muss

auch die Statorflussverkettung sinusförmig sein und ergibt sich analog zu (2.1),

22( )3 a b ct a a . (2.5)

Page 14: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

8

Durch den Faktor 2/3 wird die Drei-Stränge-Wicklungsanordnung der Zwei-Stränge-

Darstellung im Koordinatensystem angepasst [35, Seiten 2-3].

2.2.2 Koordinatensysteme Die PMSM Maschinen sind meistens dreisträngig aufgebaut und werden mit sinusförmigen

Eingangsgrößen betrieben. Dadurch ergeben sich komplexe Zusammenhänge, die durch die

vektorielle Beschreibung vereinfacht werden. Um das mathematische Modell von der PMSM

bilden zu können, müssen alle Größen in nur einem Koordinatensystem dargestellt werden.

Die Synchronmaschinen verfügen über zwei Koordinatensysteme, ein statorfestes und ein

rotorfestes Koordinatensystem.

Das Statorkoordinatensystem ( ) besteht aus einer Anordnung von zwei senkrecht

aufeinander stehenden Achsen, die fest mit dem Stator verbunden sind, siehe Bild 2.4.

Bild 2.4. Zusammenhang zwischen dem dreiphasigen Wicklungssystem und

Koordinatensystem.

Hierzu wird eine der Spulen ( ) in die reelle Achse und die zweite ( ) in die imaginäre

Achse gelegt, wobei die Achse des Raumzeigersystems mit der a-Achse des dreiphasigen

Stators zusammenfällt.

Das Rotorkoordinatensystem ist mit dem Polrad bzw. Rotor der PMSM Maschine verbunden

und rotiert mit diesem. Seine Achsen tragen die Bezeichnungen "d" und "q". Die d-Achse des

Rotorkoordinatensystems wird entlang der Magnetisierungsrichtung des Polrades

ausgerichtet. Die Behandlung der Drehfeldmaschine wird vereinfacht, wenn man die

Statorgrößen, d.h. die Strom- und Spannungsraumzeiger in ein rotierendes Koordinatensystem

transformiert. Da sich der Betrachter dann quasi mit dem Drehfeld bewegt, erscheint es ihm

Page 15: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

9

wie eine stehende Welle. Damit werden im stationären Betrieb alle sinusförmigen

Wechselgrößen zu Gleichgrößen.

Die Transformation der Stranggrößen in das d,q-Koordinatensystem wird meist in zwei

Schritten durchgeführt. Zunächst werden die drei Stranggrößen in ein statorfestes,

zweiachsiges Koordinatensystem umgerechnet. Im nächsten Schritt wird der durch i und

i aufgebaute Stromraumzeiger i durch eine Drehtransformation um den Rotorwinkel t

in das rotorfeste d,q-Koordinatensystem umgerechnet.

Bild 2.5 zeigt den Zusammenhang zwischen dem Stromraumzeiger i und dem Stator-,

Rotor- und allgemeinem Koordinatensystem[17, Seiten 196], [27].

Bild 2.5. Zusammenhang zwischen allen Koordinatensystemen.

Aus diesem Bild wird wie folgt entnommen:

der Stromzeiger im Statorkoordinatensystem , Index s,

( )S Sjei i (2.6)

und der Stromzeiger im Rotorkoordinatensystem d q , Index r,

( ) jr rei i (2.7)

und der Stromzeiger im allgemeinen Koordinatensystem A B , Index k,

( )k kjei i . (2.8)

Wird die Gleichung (2.6) umformuliert, gemäß ( )S Sjei i (2.9)

und in die Gleichung (2.8) eingesetzt, dann ergibt sich

Page 16: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

10

( ) ( ) ( ) ( )k S S SS k kjj je e ei i i

( ) ( )k S kjei i . (2.10)

Aus (2.10) folgt ( ) ( )S jr ei i . (2.11)

Durch Einsetzen der Gleichung (2.6) in (2.11) erhält man, ( ) ( )S Sj jjr e e ei i i und

( ) rjr ei i . (2.12)

Wird der Stromraumzeiger in den Real- und Imaginärteil zerlegt, ergibt sich ( )S ji i i . (2.13)

Auf der anderen Seite hat der Stromraumzeiger i ebenso eine reelle und eine imaginäre

Komponente im d-q Koordinatensystem, nämlich ( )r

qd ji i i . (2.14)

Das Bild 2.6 stellt den Stromraumzeiger i mit seinen Komponenten im Stator- und

Rotorkoordinatensystem dar.

Bild 2.6. Zusammenhang zwischen dem Stator- und Rotorkoordinatensystem. Werden die Gleichungen (2.2) und (2.3) in die Gleichung (2.1) eingesetzt, so ergibt sich,

( ) 2 2 2 2 2cos sin cos 2 sin 23 3 3 3 3

Sa cb j j ji i ii i i

.

Der Vergleich von Real- und Imaginärteil liefert nun

Page 17: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

11

2 1 ,3 2

13

a cb

cb

i

i

i i i

i i

(2.15)

oder in Matrix-Schreibweise

2 1 13 3 3

1 103 3

a

b

c

ii

iii

. (2.16)

Diese Transformation , , ,Clarkea b c heißt Clarke-Transformation. Das Bild 2.7 zeigt

eine Darstellung für die Stromverläufe in den beiden Koordinatensystemen.

Bild 2.7. Beispielhafte Stromverläufe in den , ,a b c und , Koordinatensystemen.

Die umgekehrte Transformation 1

, , ,Clarke a b c

ergibt

1 0

1 32 21 32 2

a

b

c

ii

iii

. (2.17)

Um den Stromraumzeiger im Rotorkoordinatensystem beschreiben zu können, werden (2.13)

und (2.14) in die Gleichung (2.11) eingesetzt.

jqd j j ei i i i

, (2.18)

mit cos sinje j

ergibt sich

cos sin cos sinqd j j j ji i i i .

Der Vergleich von Real- und Imaginärteil liefert nun

Page 18: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

12

cos sin ,

sin cosd

q

i i ii i i

(2.19)

oder in Matrix-Schreibweise

cos sinsin cos

d

q

iiii

. (2.20)

Die umgekehrte Transformation ist

cos sinsin cos

d

q

i ii i

. (2.21)

Die Transformation , ,Park d q heißt Park-Transformation und 1

, ,Parkd q

heißt die umgekehrte Park-Transformation. Das Bild 2.8 zeigt eine Übersicht über den Einsatz

dieser Transformationen in der Regelung.

Bild 2.8. Übersicht über die in der Regelung verwendeten Transformationen, [1]. 2.3 Das mathematische Modell 2.3.1 Grundlagen

Das Bild (2.9) zeigt eine PMSM Maschine. Der Rotor der PMSM wird häufig als Polrad

bezeichnet und schließt mit der ersten Statorwicklung den Winkel ein.

In der Raumzeigerschreibweise lautet die Gleichung der Ständerspannung im Stator-

Koordinatensystem(s)

( )( )( )

s

ss s dR

dtu i

. (2.22)

Page 19: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

13

Der Term ( )s

sR i berücksichtigt den Ohmschen Spannungsabfall an den Statorwicklungs-

widerständen sR . Durch die Änderung des Statorflusses wird in die Statorwicklung die

Spannung induziert [32].

Bild 2.9. Stator- und Rotorkoordinatensystem in einer zweipoligen PMSM Maschine. Der Statorfluss ( )s setzt sich aus zwei Teilen zusammen. Es gilt im Statorkoordinaten-

System ( )( ) ( )

ms ss

sL i . (2.23)

In Gleichung (2.23) ist die Selbstinduktivität der Statorwicklung mit sL bezeichnet, ( )m

s

gibt den Beitrag des Rotorflusses zur Statorflussverkettung an.

Anhand von Bild (2.9) hat der Rotorfluss nur eine Komponente in Richtung der d-Achse, die

mit dem Rotor verbunden ist und mit dem Statorkoordinatensystem den Winkel

einschließt. Im Rotorkoordinatensystem wird der Rotorfluss zur reellen Größe. Es folgt ( )r

m mq PMmd mdj mit 0mq . (2.24)

Transformiert man Gleichung (2.24) in das Statorkoordinatensystem, dann resultiert ( )s j

m PM e . (2.25)

2.3.2 Zusammenfassung der Systemgleichungen Der numerischen Auswertung werden die Systemgleichungen für den dynamischen Betrieb

zugrunde gelegt, wie sie z.B. auch aus [46] übernommen werden können. Im Unterschied zur

vorstehenden Ableitung sind die Systemgleichungen in [46] für eine beliebige Polpaarzahl

fp angegeben. Sie sind wie üblich in den rotorfesten Koordinaten, d.h. , ,0d q –

Komponenten formuliert:

s q qd d d ddu R i L i L idt

(2.26)

Page 20: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

14

q s q q q PMd ddu R i L i L idt

(2.27)

0 0 0 0( )sdu R i L idt

(2.28)

32 q q qPMf d dm p i L L i i (2.29)

2

2 LastdJ m mdt (2.30)

2 ff p (2.31)

fp … Polpaarzahl der Erregung

ddt

… Rotorposition gemäß Bild 2.9.

,ˆPM f k … Grundschwingung der Flussverkettung des Erregerfelds mit dem

Wicklungsstrang k.

sR … Ohm’scher Strangwiderstand.

0, ,qdL L L … Statorinduktivitäten gemäß [46].

m …inneres Moment der PMSM.

Bild 2.10 zeigt eine grafische Darstellung der obigen Systemgleichungen.

Bild 2.10. Modell der PMSM gemäß (2.26) ...(2.30).

Page 21: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

15

2.3.3 Spezialisierung auf den stationären Betrieb Der stationäre Betriebzustand ergibt sich durch Setzen von 0d dt in den Gleichungen

(2.26) und (2.27). Dadurch ergibt sich

,.

s s qd d

q s q s PMd

U R I L IU R I L I

(2.32)

Das Bild 2.11 stellt die Zeigerdarstellung der PMSM bei stationärem Betrieb im Rotor-

koordinatensystem dar.

Mit

qd ju u u , (2.33)

zur Vereinfachung wird nun der Index r weggelassen, folgt durch Einsetzen von (2.32)

s q s q PMd dU R I jI j L I jI j ,

s s PMU R I j L I j ,

s s PMU R j X I j ,

mit

p PMU j

s s sZ R j X

ergibt sich

s pU Z I U .

mit

U Spannungszeiger,

sX Synchronreaktanz vom Stator,

sZ Impedanz der Statorwicklung,

pU Polradspannung.

Page 22: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

16

Bild 2.11. Zeigerbild der PMSM im stationären Betrieb.

2.4 Drehmoment- und Bewegungsgleichung

Die Gleichung (2.34) stellt das innere Drehmoment m für die PMSM dar, das für die

Regelung der PMSM Maschine sehr zweckmäßig ist.

32 q q qPMf d dm p i L L i i . (2.34)

Da für die SPMSM d qL L gilt, wird die Gleichung für das Drehmoment zu

32 qPMfm p i . (2.35)

Die Bewegungsgleichung lautet hier 2

2 Lastd dJ J m mdt dt

, (2.36)

ddt .

Das Lastmoment wird gemäß (2.37) und Bild 2.12 modelliert [14, Seite 4],

. .Lastm c d sign (2.37)

c dickflüssiger Reibungsfaktor, sec/c Nm rad ,

d Trockenreibung, d Nm .

mechanische Winkelgeschwindigkeit des Rotors rad sec .

Page 23: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

17

Bild 2.12. Modellierung der Last.

In der Bewegungsgleichung (2.36) wird die Größe Lastm verwendet. Deren Bedeutung wird

an einem Beispiel erläutert, bei dem eine (generatorisch arbeitende) Gleichstromneben-

schlussmaschine angetrieben wird. Dieser Maschinentyp eignet sich wegen seiner guten

Regelbarkeit als (allgemeine) Last (simulation). Bild 2.13 zeigt die betrachtete Anordnung.

Bild 2.13. Drehmomente am betrachten Maschinensatz

Drehmomente am Maschinensatz gemäß Bild 2.13

m … inneres (erzeugtes) Moment der PMSM,

1Vm … Verlustmoment der PMSM,

Wm … an der Welle, d.h. nach außen wirksames Moment der PMSM,

1W Vm m m ,

DCm … inneres Moment der Gleichstrommaschine, siehe Abschnitt 2.5,

2Vm … Verlustmoment der Gleichstrommaschine.

Damit erhält man für den Maschinensatz mit dem gesamten Massenträgheitsmoment J

Page 24: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

18

2

1 22 V DC VdJ m m m mdt

1 2V V DCm m m m . (2.38)

Das gesamte Verlustmoment

1 2V V Vm m m (2.39)

wird durch einen Auslaufversuch bestimmt. Für das mathematische Modell kann ( )Vm als

Wertetabelle oder als Näherung

( )Vm c d sign (2.40)

verwendet werden. Hier soll die analytische Näherung für Vm genutzt werden; die Größen c,

d werden durch einen Auslaufversuch bestimmt. Der Auslaufversuch ist im Anhang B

dokumentiert.

2.5 Modell der Gleichstrommaschine

Die Gleichstrom-Nebenschlussmaschine ist als Pendelmaschine (Stator drehbar gelagert)

ausgeführt. Bild 2.14 zeigt die Schaltung und die Anschlussbezeichnungen der betrachteten

Maschine s. a. [30].

Bild 2.14. Anschlüsse und Bezeichnungen der Gleichstrom-Nebenschlussmaschine.

Stationärer Betrieb,

A A AU R I c (2.41)

0LA AU I R … eingesetzt in (2.41) ergibt

( ) 0LA AR R I c .

Das Bild 2.15 zeigt AI

Page 25: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

19

Bild 2.15. Kennlinie AI .

Anmerkung: negative Drehzahl (negativ für die Pendelmaschine, positiv im Sinne des Bildes

2.13) führt auf positives Moment wie es als Lastmoment gebraucht wird.

Dynamischer Betrieb,

( ) ( ) ( ) ( ) KomA A A A Adu t c t R i t L i t udt

, (2.42)

eventuell .0 { }Kom KomKom A Au U sign i R i berücksichtigen. (2.43)

Hier ist Komu vernachlässigt.

Mit 0LA Au R i folgt aus (2.42)

( ) ( ) 0LA A A AdR R i L i c tdt

. (2.44)

Mit

DC Am c i

folgt schließlich Bild 2.16.

Bild 2.16. Einbeziehung der Gleichstrom-Nebenschlussmaschine als Last gemäß Bild 2.13. Dabei muss beachtet werden, dass

Page 26: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

20

Gemäß Bild 2.13 das Vorzeichnen vom anders als in der Theorie für die

Gleichstrom-Nebenschlussmaschine definiert ist. Dieser Sachverhalt wird im

Bild 2.16 durch die Multiplikation vom " " mit " 1" berücksichtigt.

Das Moment der Gleichstromnebenschlussmaschine DCm gemäß

2

2 V DCdJ m m mdt in dem Systemblock PMSM eingeführt werden

muss. Die Bewegungsgleichung 2

2dJdt ist im vorstehenden Abschnitt

2.4 als Gleichung (2.37) eingeführt.

2.6 Quasistationäre Betriebsarten der PMSM Beim Betrieb einer PMSM mit variabler Frequenz sind zwei Frequenzbereiche zu betrachten.

Dies sind der Konstantmoment-, Konstantfluss-, Grunddrehzahl- oder

Spannungsstellbereich ( Nn n ) und der Konstantleistungsbereich oder Feldschwächbereich

( Nn n ). Das Bild 2.17 zeigt die Kennenlinien der PMSM Maschine für Umrichterspeisung

in beiden Bereichen. Im Konstantflussbereich wird die Motorspannung U erhöht bis die

Nenndrehzahl erreicht wird. Bei Nenndrehzahl wird die Nennspannung NU und die

Nennfrequenz Nf erreicht. Die mechanische Leistung an der Motorwelle steigt linear mit der

Drehzahl an [15, Seiten 42 und 43].

Bild 2.17. Spannungsstellbereich und Feldschwächbereich.

Page 27: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

21

Da der Motorfluss in diesem Bereich konstant ist, erhält man ein konstantes Drehmoment für

einen konstanten Strom. Im Bild 2.18 ist das Ersatzschaltbild für stationären Betrieb für eine

PMSM dargestellt.

Um die Drehzahl über die Nenndrehzahl hinaus weiter zu steigern, muss die Speisefrequenz

über Nennfrequenz Nf erhöht werden. Weil die Motorspannung bei einer weiteren

Frequenzerhöhung aber nicht ansteigen kann, wird der Motorfluss geschwächt.

Bild 2.18. Das Ersatzschaltbild für eine PMSM im stationären Betrieb.

Die PMSM Maschine arbeitet dann im Feldschwächbetrieb, in dem sich höhere Drehzahlen

(als die Nenndrehzahl) erreichen lassen. Dort bleibt die Motorspannung konstant, die

Drehzahl steigt weiter an, und der Fluss sinkt. Hier reduziert sich das verfügbare

Drehmoment und es entsteht ein Bereich konstanter Leistung[15, Seiten 42 und 43].

Page 28: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

22

3. Feldorientierte Regelung mit Positionssensor - Mathematische Modellierung

3.1 Regelungsmethoden der PMSM Da die PMSM normalerweise als Drehstrommaschine betrachtet wird, kann sie mit drei

Methoden geregelt werden [12, Seite 31],

VF

Regelung: offener Regelkreis (Steuerung)

Feldorientierte Regelung (Field Oriented Control, FOC): geschlossener Regelkreis

(Regelung).

Drehmomentregelung (Direct Torque Control, DTC): geschlossener Regelkreis

(Regelung).

Im Folgenden wird ausführlich nur auf die feldorientierte Regelung eingegangen.

3.2 Die feldorientierte Regelung In modernen Antriebsystemen wird nach hoher Dynamik gesucht. Die PMSM lassen sich in

wenigen Millisekunden aus dem Stillstand auf ihre Bemessungsdrehzahl beschleunigen und

wieder bis zum Stillstand abbremsen. Der Grund ist, dass eine schnelle Reaktion vom

Drehmoment durch eine schnelle Stromregelung erreicht werden kann. Die Zeitkonstante für

den dynamischen Strom ist normalerweise viel kleiner als die Zeitkonstante für den

dynamischen Fluss [9, Seite 12].

Die feldorientierte Regelung (Field Oriented Control oder Vector Control) ist als

Regelverfahren für dreiphasige Maschinen ausgelegt. Das Ziel dieses Regelungsverfahrens

für Asynchronmaschinen bzw. Synchronmaschinen ist, eine entkoppelte Regelung von Fluss

und Drehmoment zu erhalten, um ein Verhalten wie bei einer Gleichstromnebenschluß-

maschine aufzuweisen. Das heißt, dass die feldorientierte Regelung aus einem in d-, q-

Komponente dargestellten Stromvektor besteht, damit das benötigte Drehmoment erzeugt

wird. Das erzeugte Drehmoment besteht aus dem Produkt zweier Komponenten. Nun wenn

die Flusskomponente konstant gehalten wird, wird das erzeugte Drehmoment proportional zur

Stromkomponente qi . Das Bild 3.1 zeigt ein Zeigerbild der PMSM für die feldorientierte

Regelung im stationären Betrieb [18, Seite 69]. Das Bild 3.2 zeigt die Struktur der

feldorientierten Regelung.

Page 29: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

23

Bild 3.1. Vereinfachtes Zeigerbild der PMSM in der feldorientierten Regelung für stationären

Betrieb.

Bild 3.2. Die Struktur der feldorientierten Regelung.

Page 30: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

24

Allgemein lässt sich zum Aufbau einer Kaskadenregelung sagen, dass die einzelnen

Regelschleifen so angeordnet werden, dass jede Schleife höchstens eine große Zeitkonstante

bzw. ein I-Glied und eine oder mehrere kleine Zeitkonstanten oder ein Totzeitglied enthält

[24,Seite 90]. Für die Kaskadenregelung wird hier ein überlagerter Drehzahlregler um den

Stromregler gelegt. Dann wird die über den Geber erfasste Drehzahl als Feedback für den

Drehzahlregler eingeführt.

Der übergeordnete Drehzahlregler gibt an seinem Ausgang den Sollwert für den

unterlagerten Stromregelkreis und damit den Sollwert der zu erzeugenden Stromkomponente

qi vor. Durch Begrenzung des Stromsollwerts am Ausgang des Drehzahlreglers erlaubt diese

Struktur, auf einfache Weise den Motor und den Umrichter vor Überlastung zu schützen [24,

Seite 90].

Bild 3.3. Struktur der verwendeten Kaskadendrehzahlregelung.

Das Bild 3.3 zeigt eine typische Implementierung der Kaskadendrehzahlregelung für eine

PMSM.

Zusammenfassung der Vorteile der Kaskadenregelung [24, Seite 90]:

übersichtliche Struktur.

Page 31: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

25

einfache Einstellregeln für die einzelnen Regelkreise.

schrittweise Inbetriebnahme.

einfache Methode zur Strombegrenzung.

Das Bild 3.4 zeigt dieselbe Kaskadenstruktur, die mit Hilfe des DSP Controllers

TMS320F2812 von Texas Instruments ausgeführt wird.

Software-Blöcke:

Block (1): Drehzahlregler.

Block (2): Stromregler für die q-Komponente.

Block (3): Stromregler für die d-Komponente.

Block (4): umgekehrte Park-Transformation , Gleichung(2.21).

Block (5): Raumzeigermodulation(Space Vector Control) ist eine Strategie für die

Erzeugung PWM Signale.

Block (7): Park-Transformation , Gleichung(2.20).

Block (8): Clark-Transformation , Gleichung(2.16).

Block (10): Ein Algorithmus, um die Drehzahl zu gewinnen.

Hardware-Blöcke:

Block (6): PWM Treiber, um die PWM Signale mit den Leistungsschaltern verbinden

zu können.

Block (9): A/D Wandler wird für die Messungen der Motorströme ( ,a bi i ) benutzt.

Block (11): Eine Schnittstelle für einen Inkrementalgeber.

Block (12): Umrichter.

Block (13): Inkrementalgeber um die Drehzahl des Motors zu erfassen.

Block (14): PMSM.

Im Folgenden wird ausführlich auf die Auslegung von den Drehzahl- und Stromreglern eingegangen.

Page 32: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

26

Bild 3.4. Eine Kaskadenstruktur mit Hilfe des DSP Controllers TMS320F2812 realisiert.

3.3 Stromregelung Die Stromregelung spielt bei einem feldorientiert betriebenen Drehstromantriebssystem eine

große Rolle. Die Konzipierung der überlagerten mechanischen Systeme (Drehzahl-,

Lageregelung) verlangt eine unterlagerte Stromregelung mit idealem Verhalten, nämlich mit

einer verzögerungsfreien Einprägung des Ständerstromes. Die Annahme, dass die ideale

Stromregelung durch eine Totzeit ersetzt werden kann, vereinfacht wesentlich den Entwurf

der Regelungen von mechanischen, oft auch schwingungsfähigen Übertragungssystemen.

Eine wichtige Aufgabe des Reglerentwurfs ist die Berücksichtigung sämtlicher

Systemrandbedingungen im Regleransatz und in der Reglerrückführung. Mit den

herkömmlichen PI-Reglern bleibt auch diese Berücksichtigung bisher aus. Die

Randbedingungen sind [18, Seite109]:

Die vom Stromregler berechnete einzuprägende Ständerspannung kann erst im

folgenden Takt wirksam werden.

Die Technik der Istwerterfassung für den Strom (Augenblickswert- Messung mittels

eines A/D-Wandlers) und für die Drehzahl (z.B integrierende Messung durch

Inkrementalgeber) sollte in Betracht gezogen werden.

Page 33: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

27

Insgesamt lassen sich die bekannten Verfahren allgemein in zwei Gruppen aufteilen:

nichtlineare und lineare Regelungen.

3.3.1 Nichtlineare Stromregelungen

Regelungen dieser Gruppe können Zwei- oder Dreipunktregler sowie intelligente prädikative

Regler aufweisen. Im Folgenden wird ausführlich auf Zweipunktregler eingegangen.

3.3.1.1 Zweipunktregler

Umrichter mit einem Gleichspannungszwischenkreis und einem Transistorpulswechselrichter

arbeiten bei Pulsfrequenzen größer als 1 kHz annährend verzögerungsfrei. Als einfachstes

Regelverfahren bietet sich daher für die Strangströme ein Zweipunktregler an. Es ermöglicht

gleichzeitig die Pulssteuerung des Wechselrichters [19, Seite 342].

Bild 3.5.a, b zeigt das Prinzipschaltbild und die zeitlichen Verläufe der Ausganggrößen für

eine Zweipunkt-Stromreglung. In Abhängigkeit von der Differenz zwischen dem

vorgegebenen Stromsollwert und dem gemessenem Stromistwert wird die Ausgangspannung

zwischen den beiden möglichen Potentialen 2zkU

und 2zkU

hin- und hergeschaltet.

Der Strom verbleibt innerhalb eines Toleranzbandes, das als Hysterese des Komparators

vorgegeben wird [20, Seite 426].

Dieses Regelverfahren zeichnet sich durch die folgenden Vorteile aus:

Die Einfachheit im Aufbau.

Ein sehr gutes dynamisches Verhalten ( Der schnellste Regler, den es gibt ).

Es ist aber mit folgenden Nachteilen verbunden:

Schaltfrequenz ist nicht konstant; die Pulsfrequenz variiert mit der Veränderung der

Drehzahl und der Last, was als besonders unerwünscht gilt.

Das in einem großen Frequenzbereich enthaltene Oberschwingungsspektrum.

Das Geräusch kann unangenehm sein.

Page 34: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

28

(a) Ständerstromregler mit drei Zweipunktstromreglern

(b) Zeitverlauf der Ausgangsgröße eines Zweipunktsstromreglers

Bild 3.5. Prinzipschaltbild und die zeitlichen Verläufe eines Zweipunktreglers.

Page 35: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

29

3.3.2 Lineare Stromregelungen: 3.3.2.1 PI Stromregler als Wechselgrößenregelung ( , ,a cbi i i )

Die erste klassische Variante der linearen Stromregelung war das Verfahren mit drei bzw. mit

zwei getrennt voneinander arbeitenden PI-Strangstromreglern, Bild 3.6 , deren sinusförmige

Ausgangssignale zu den Pulsbreitenmodulatoren (PWM) zum Vergleich mit einer

sägezahnförmigen Kurve geführt werden. Die Zündmuster werden unmittelbar von diesem

Vergleich gebildet [18, Seite 118].

Bild 3.6. PI Stromregelung in Ständerkoordinaten. Das in Bild 3.6 gezeigte Regelverfahren hat allerdings im stationären Betrieb (wie alle

Regelverfahren in Ständerkoordinaten) den Geschwindigkeitsfehler als Hauptnachteil, denn

die PI-Regler müssen wegen der sinusförmigen Stromsollwerte ständig im dynamischen

Betrieb arbeiten [18, Seite 118], [35, Seite 10], [37, Seiten 76-78].

3.3.2.2 PI Stromregler als Gleichgrößenregelung ( , qdi i ) Eine wesentliche Verbesserung gegenüber dem Regelverfahren in Ständerkoordinaten bringt

die Regelung im Rotorkoordinatensystem, siehe Bild 3.2, in dem die Regelgrößen stationär

Gleichgrößen darstellen. Die Einstellung der Regler wird einfacher als bei Wechselgrößen,

Page 36: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

30

die durch ihre Frequenz eine grundlegende Veränderung haben. Deswegen ist es schwierig bei

Wechselgrößen, eine Bandbreite des Reglers über den ganzen Frequenzbereich festzusetzen.

Die Gleichgrößenregelung ist sehr verbreitet. Im Folgenden wird auf die wichtigsten Vorteile

und Nachteile eingegangen [18, Seite 118], [9, Seite 12], [37, Seiten 76-78].

Vorteile:

Die Genauigkeit ist groß, weil der Regler nicht mehr im dynamischen Betrieb

arbeiten muss.

Eine vorteilhaftere Entkopplung der Stromkomponenten wird garantiert und damit

auch eine bessere Feldorientierung.

Nachteile:

Die Anregelzeit bzw. die Dynamik der Regelung ist von der Ständerstreuzeit-

konstanten sehr stark abhängig. So gesehen ist die vom überlagerten Drehzahlregler

erwünschte, verzögerungsfreie Stromeinprägung kaum möglich.

Im Rotorkoordinatensystem sind die Stromkomponenten , qdi i stark miteinander

verkoppelt, deswegen soll eine hinreichende Entkopplung gewährleistet werden.

3.3.2.3 Vergleich zwischen Zweipunktregler und PI Stromregler Die Tabelle 3.1 zeigt den Vergleich zwischen dem Zweipunktregler und PI Stromregler, der

im Rotorkoordinatensystem realisiert ist [11, Seite 156].

Eigenschaft

Stromregler Zweipunktregler PI-Regler

Pulsfrequenz Veränderlich Fest Dynamisches Verhalten Schnellste Schnell

Stromwelligkeit Einstellbar FestStromfilter Abhängig von i Normalerweise klein

Schaltverluste Normalerweise Groß Klein

Tabelle 3.1. Zweipunktregler und PI Stromregler.

3.3.3 Augenblickswertmessung mit einem A/D-Wandler Auf Grund der Einfachheit ihrer technischen Realisierung und der Möglichkeit einer hohen

Auflösung wird diese Variante häufig angewandt. Das Problem sind dabei allerdings die

miterfassten Stromoberwellen, deren Unterdrückung meist mit einem zusätzlichen Filter und

dadurch mit einer zusätzlichen Istwertverzögerung verbunden ist. Diese Verzögerung ist für

die Dynamik der Stromregelung, besonders für die neue Stromregelung, unerwünscht und

Page 37: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

31

daher möglichst zu vermeiden. Zur exakten Erfassung der Grundschwingung und zur

weitergehenden Eliminierung der pulsfrequenten Oberschwingungen spielt der Zeitpunkt des

Strommessanstoßes eine entscheidende Rolle. Der Messanstoß muss genau in der Mitte der

Nullzeit- 0T oder 7T stattfinden. Bild 3.7 erläutert den Sachverhalt [18, Seiten 76-77].

Der Vorteil dieser Messstrategie besteht darin, dass das sonst notwendige Filter wegfallen

kann und die damit verbundene Verzögerung verschwindet. Das vorgestellte Prinzip zur

Realisierung der Messabtastung verdeutlicht die Forderung nach einer strengen

Synchronisation zwischen Pulsung und Messabtastung, die schon beim Hardware-Entwurf

durchdacht werden muss [18, Seite 77]. In den modernen MCUs und DSCs, die in der

Antriebstechnik verwendet sind, kann man die Synchronisation durch die entsprechende

Hardware durchführen.

Das Bild 3.8 zeigt den Unterschied zwischen zwei Strömen, wo einer der Ströme ohne

Synchronisation zwischen Pulsung und Messabtastung gemessen ist und der zweite mit

Synchronisation.

Bild 3.7 Zeitpunkte der Messanstöße zur Strommessung mittels A/D Wandlers

Page 38: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

32

Bild 3.8. Ständerstrom mit und ohne Synchronisation zwischen Pulsung und Messabtastung.

3.3.4 Entkopplung Der Stromregler sollte auch noch eine ideale Entkopplung zwischen den feld- und

momentbildenden Komponenten di und qi aufweisen, denn es ist bekannt, dass die beiden

Komponenten im Rotorkoordinatensystem miteinander stark verkoppelt sind (2.22), (2.23),

(2.25) [18, Seite109].

Ziel der Regelungsverfahren für Synchronmaschinen bzw. Asynchronmaschinen und damit

auch der Entkopplung ist, eine entkoppelte Regelung von Fluss und Drehmoment zu erhalten,

d.h. ein Verhalten wie bei einer Gleichstromnebenschlussmaschine. Die vollständige

Entkopplung lässt sich am einfachsten realisieren, wenn die Entkopplung ein inverses

Übertragungsverhalten zur PMSM aufweist [8, Seiten 459-460]. Die Gleichgrößenregelung

der Ströme di und qi erfordert deshalb eine Zweigrößenregelung, die diese Verkopplung

aufhebt, damit die beiden Komponenten di und qi separat voneinander regelbar werden.

Page 39: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

33

Die Entkopplung der d- und q-Achse kann über ein Entkopplungsnetzwerk, das ein zur

PMSM inverses Übertragungsverhalten hat, am Ausgang der Stromregler, so wie im Bild 3.9

gezeigt, erfolgen.

Obwohl der Strom in der d-Achse auf Null ausgeregelt werden soll, ist ein Stromregler hier

erforderlich. Da durch die Verkopplung zwischen den beiden Achsen eine Störgröße in die d-

Achse eingreift. Dies muss mithilfe eines Stromreglers in der d-Achse ausgeregelt werden

[42, Kapitel 10, Seite 3].

Im Hinblick auf die Entkopplung werden die Spannungsgleichungen (2.26) und (2.27) in

lineare und verkoppelte Summanden aufgeteilt gemäß [26, Seite 8], [12, Seite 73]:

( )kopplin

dd

kopplins q qd d d d d d

uu

du R i L i L i u udt

, (3.1)

( )kopp

lin

kopplinq s q q q q qPMd d

uquq

du R i L i L i u udt

. (3.2)

Bild 3.9. Entkopplungsnetzwerk am Ausgang der Stromregler.

Page 40: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

34

Bild 3.10. Blockdiagramm des Entkopplungsnetzwerks.

Die folgenden linearen Komponenten stellen die Spannungen an den Stromreglerausgängen

dar.

lind

sd d

lin qq s q

du R idt

du R i

dt

(3.3)

Die verkoppelten Komponenten, Gleichung (3.4), stellen die Spannungen an den Ausgängen

der Entkopplungsnetzwerke dar, die an den Stromreglerausgängen zugeführt werden, wie im

Bild 3.9 und 3.10 gezeigt ist.

kopp

q q qd

kopp

q PMd d d

u L i

u L i

(3.4)

Die Gleichungen der Entkopplung setzen das nichtlineare Motormodell in ein lineares Modell

um, damit die einfachsten PI-Regler im Stromregelkreis anstatt komplexer Regler eingesetzt

werden können.

Page 41: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

35

3.3.5 Stromregelkreis

Grundaufgabe des Stromreglers ist, die Abweichungen vom Drehzahlsollwert durch

entsprechende Spannungssollwerte möglichst schnell auszuregeln. Die Drehmomentregelung

ergibt sich über den Stromregler aus der Proportionalitäts- Betrachtung zwischen Strom und

Drehmoment. Die Regelkreise für den Längs- und Querstrom haben keine Unterschiede

bezüglich der Reglersynthese. Sie unterscheiden sich nur in ihren Entkopplungsnetzwerken.

Die Dimensionierung der Reglerparameter in einer Kaskade erfolgt schrittweise von innen

nach außen. Zunächst wird der innere Regler, der Stromregler, dann der äußere, der

Drehzahlregler, ausgelegt.

Die Übertragungsfunktionen des Stromregelkreises setzen sich aus unterlagertem

Stromregler, Umrichter, elektrischer Zeitkonstante der Maschine und Stromfilter

zusammen.

Aufgrund unbekannter Übertragungsfunktionen ist eine genaue oder gar optimale Synthese

des Regelkreises natürlich nicht möglich. Deswegen sind Näherungen notwendig.

Die Übertragungsfunktionen des Umrichters lässt sich näherungsweise durch ein " 1PT -Glied

" oder Verzögerungsglied erster Ordnung mit der Ersatzzeitkonstanten UT beschreiben, mit

1.5U samplingT T . (3.5)

Das Stromfilter wird als 1PT im Rückführzweig ausgeführt. Es dient zur Eliminierung der

Oberschwingungen in gemessenen Stromistwert.

Die Abtastzeit der Stromregelkreise entspricht dem Abtastalgorithmus samplingT und ist

deutlicher kleiner als die elektrische Zeitkonstante AT . Daher ist es möglich, einen quasi-

kontinuierlichen Reglerentwurf im S-Bereich zu betrachten.

Bild 3.11 zeigt das Strukturbild des vereinfachten Stromregelkreises.

Page 42: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

36

Bild 3.11. Vereinfachtes Strukturbild des Stromreglers mit dem Filter.

Die Zeitkonstante giT und UT bilden die kleine Zeitkonstante iT , während AT die große

Zeitkonstante darstellt.

i giUT T T (3.6)

Bild 3.12 zeigt die Zusammenfassung von den kleinen Zeitkonstanten im Stromregelkreis.

Bild 3.12 Stromregelkreis mit der Ersatz-Summenzeitkonstanten iT . Der Stromregelkreis besteht aus zwei 1PT -Gliedern in einer Reihenschaltung, für die

Regelung bietet sich ein PI-Regler an. Die Übertragungsfunktion des offenen

Stromregelkreises lautet dann

1 1

1 1n

oi Pn i A

sT VF KsT sT sT

. (3.7)

Page 43: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

37

Der Entwurf des unterlagerten Stromreglers mit der Messwertglättung erfolgt nach dem

Betragsoptimum, wobei die Strecke keinen I Anteil hat. Die Parameter des Stromreglers

folgen damit aus [8, Seiten 52, 53] zu:

Nachstellzeit nT n AT T , (3.8)

Reglerverstärkung PK 2

AP

i

TK

V T

(3.9)

und somit PI

n

KK

T .

Nach diesem Verfahren wird die große Zeitkonstante des offenen Regelkreises AT mit der

Nachstellzeit nT des Reglers kompensiert und mit dem Wert von PK wird für die Dämpfung

des geschlossenen Regelkreises der Wert " 0.7 " erreicht [24, Seite 93].

Da die Übertragungsfunktion der Strecke nur angenähert ermittelt wurde, sind die

Festlegungen der Reglerparameter ebenfalls nur angenähert möglich. Für ein 100%iges

Funktionieren einer Servomotorregelung ist die richtige Einstellung der PI Reglerparameter

nötig. Aber leider kennt man im Allgemeinen nicht alle Komponenten der Regelstrecke.

Natürlich ist damit die mathematisch richtige Ermittlung der Parameter fast unmöglich, ein

Nachjustieren mittels „trial-and-error“ ist notwendig.

3.4 Drehzahlregelung

Der Drehzahlregelkreis ist ein Bestandteil der Kaskadenstruktur, die aus Drehzahl- und

Stromregelung besteht. Üblicherweise wird der Drehzahlregler als PI Regler ausgeführt, um

bleibende Regelabweichungen auszuregeln.

3.4.1 Ermittlung der Winkelgeschwindigkeit Mit Inkrementalgebern ist die mechanische Winkelgeschwindigkeit des Rotors nicht direkt

messbar. Deswegen wird durch Gleichung (3.10) direkt ermittelt.

2 1

T

mit (3.10)

in rad /sec,

2 die aktuelle Lage des Rotors bzw. des Gebers,

Page 44: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

38

1 die alte Lage des Rotors bzw. des Gebers,

T Taktzeit des Drehzahlreglers.

Die Gleichung (3.10) ermittelt nur den Mittelwert der Drehzahl über die letzte Abtastung. Bei

direkter Differenziation liefert die gemessene Lage durch Rauschen und die begrenzte

Genauigkeit eine ungenaue mittlere Geschwindigkeit. Ungenauigkeit und Rauschen nehmen

mit abnehmender Abtastzeit zu. Deswegen ist ein Tiefpassfilter oder Mittelwertfilter

notwendig, um das Rauschen zu reduzieren und um Jitter des Inkrementalgebers zu

vermeiden [28], [21, Seite 85].

3.4.2 Drehzahlregelkreis Der Drehzahlregelkreis setze sich aus einem Drehzahlregler, dem unterlagerten Wirkstrom-

regelkreis, der mechanischen Zeitkonstante der Maschine und dem Drehzahlfilter zusammen.

Die gesamte innere Schleife des Stromregelkreises wird hier näherungsweise auf ein 1PT -

Glied mit der Ersatzzeitkonstante ersT reduziert. Durch diese Ordnungsreduktion des inneren

Stromregelkreises vereinfacht sich der Reglerentwurf für die äußere Drehzahlschleife.

Im Drehzahlregelkreis wird häufig im Rückführzweig ein Tiefpassfilter zur Glättung des

berechneten Drehzahlistwerts eingeführt, siehe 3.4.1.

Der Entwurf des überlagerten Drehzahlreglers mit einer Messwertglättung erfolgt nach dem

symmetrischen Optimum [8, Seite 229], [3, Seiten 255-260]. Bild 3.13 zeigt das Strukturbild

des vereinfachten Drehzahlregelkreises.

Bild 3.13. Vereinfachtes Strukturbild des Drehzahlreglers mit einem Filter.

Page 45: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

39

Die Ersatzzeitkonstante des Stromregelkreises ersT und Zeitkonstante des Drehzahlfilters gnT

werden zu einer kleinen Zeitkonstante

n ers gnT T T (3.11)

zusammengefasst.

Bild 3.14 zeigt die Zusammenfassung von den kleinen Zeitkonstanten im Drehzahlregelkreis.

Bild 3.14 Drehzahlregelkreise mit einer Ersatz-Summenzeitkonstanten nT .

Die Übertragungsfunktion des offenen Drehzahlregelkreises lautet dann

1 1

1n T

o Pnn

sT KF K

sT sT sJ

. (3.12)

Hier darf man keinesfalls auf den Gedanken kommen, dass die Ersatzzeitkonstante nT mit

der Nachstellzeit nT des Drehzahlreglers kompensiert werden kann, denn das verbleibende

zweifach integrierende Verhalten würde im geschlossenen Regelkreis zu Dauerschwingungen

führen [24, Seite 95].

Die nach dem symmetrischen Optimum eingestellten Reglerparameter werden wie folgt

berechnet [8, Seiten 60-65], [3, Seiten 242-254].

Nachstellzeit nT 4 nnT T , (3.13)

Reglerverstärkung PK 2P

nT

JKK T

(3.14)

und somit PI

n

KK

T

.

Page 46: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

40

3.4.3 Maßnahmen zur Vermeidung des Regler-Windup bei PI-Reglern Windup bedeutet, dass der Regler bei erheblichen Sollwertänderungen ein Stellsignal mit

großer Amplitude erzeugt, welche die maximal erlaubte Amplitude überschreitet. Der I-

Anteil im Regler liefert den wesentlichen Beitrag zu diesem unerwünschten Effekt. Es gibt

eine Reihe unterschiedlicher Maßnahmen, um diesen Effekt zu bekämpfen. Das Bild 3.15

zeigt eine Möglichkeit zur Beseitigung des Regler-Windup. Bei dieser Methode wird der

Eingang des Integriers auf Null gesetzt, sobald das Stellsignal die erlaubten Grenzen

überschreitet. Er tritt wieder in Aktion, wenn das Stellsignal unterhalb der eingestellten

Grenze ist.

Bild 3.15. Strukturbild zur Vermeidung des Regler-Windup, [8, Seiten148-151]. 3.5 Pulsweitenmodulation durch Raumzeigermodulation Ein Wechselrichter ist ein Stellglied, das gepulste dreiphasige Spannungen mit vorgegebenem

Betrag, vorgegebener Frequenz sowie erforderlichem Phasenwinkel an die Maschinen-

klemmen anlegt. Die Pulsmuster werden vom Mikrokontroller berechnet. Bild 3.16 zeigt ein

vereinfachtes Modell aus idealen Schaltern. Mit drei Schaltern ergeben sich acht mögliche

logische Zustände 32 8 bzw. acht Raumzeiger 0 1 7, ....U U U , welche in Tabelle 3.2

aufgeführt sind. Die Raumzeiger 0U (alle Schalter auf negativem Potential) und 7U (alle

Schalter auf positivem Potential) sind die Nullvektoren. Mit den übrigen sechs Raumzeigern

werden die Phasenspannungen auf entweder 3zkU oder 2 3zkU eingestellt. Die

räumliche Lage der Raumzeiger zu den , Achsen bzw. zu den Wicklungen wird in

Bild 3.17 dargestellt. Die Raumzeiger teilen den ganzen Vektorraum in sechs Sektoren

1 6......S S bzw. vier Quadranten 1 4.....Q Q [18, Seite 12].

Page 47: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

41

Bild 3.16. Prinzipschaltbild eines U-Wechselrichters.

Entscheidend ist, dass das Stellglied keine kontinuierlich verstellbare Stellgröße, d.h. keine

kontinuierlichen Werte für die Amplitude und die Phasenlage des Spannungsraumzeigers,

erzeugen kann. Der gewünschte kontinuierliche Verlauf des Sollraumzeigers muss daher

durch eine Pulsweitenmodulation angenähert werden. Dies hat zur Folge, dass bei einer

gewünschten Lage des Raumzeigers z.B. zwischen 1U und 2U , die Raumzeiger 1U , 2U und

7U oder 8U nacheinander eingeschaltet werden, so dass sich nur im zeitlichen Mittel der

Sollraumzeiger nach Betrag und Phase ergibt [8, Seite 605].

Schalter Stellung

, ,a cbS S S

verkette Spannung

uvU vwU wuU

Phasenspannung

unU vnU wnU

Raumzeiger

U 0 0 0 0 0 0 0 0 0 0 0U 1 0 0 zkU 0 zkU 2

3 zkU 13 zkU 1

3 zkU 021 3

jzkU U e

1 1 0 0 zkU zkU 13 zkU 1

3 zkU 23 zkU

2 32 3

j

zkU U e

0 1 0 zkU zkU 0 1

3 zkU 23 zkU 1

3 zkU 22 3

3 3

j

zkU U e

0 1 1 zkU 0 zkU 2

3 zkU 13 zkU 1

3 zkU 24 3

jzkU U e

0 0 1 0 zkU zkU 13 zkU 1

3 zkU 23 zkU 4

2 35 3

j

zkU U e

1 0 1 zkU zkU 0 1

3 zkU 23 zkU 1

3 zkU 52 3

6 3

j

zkU U e

1 1 1 0 0 0 0 0 0 7 0U

Tabelle 3.2. Ausgangsspannungsraumzeiger des U-Wechselrichters [8, Seite 606].

Page 48: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

42

Bild 3.17. Raumzeigerdarstellung der Ausgangsspannungen beim U-Wechselrichter, [18, Seite 12].

3.5.1 Prinzip der Modulation

U ergibt sich aus der vektoriellen Addition von r lU U ( r von rechts und l von links). Die

beiden Vektoren werden durch die logischen Zustände von 1U und 2U , siehe Tabelle 3.2,

innerhalb der Zeitspanne realisiert. Die Periode pT stellt die Hälfte der Pulsperiode pT

( p p pT T T , siehe Bild 3.18) dar [18, Seite 13].

max

max

rr p

lpl

UT T

U

UT T

U

, (3.15)

wobei 1 6max2...3 zkU U U U gilt. (3.16)

In der verbleibenden Zeitspanne p r lT T T wird einer der Nullvektoren 0U oder

7U ausgegeben. Im Endeffekt ist damit folgende Gleichung verwirklicht:

0 1 2 0

p r llrr l

p p p

T T TTTU U U U U U UT T T

(3.17)

oder

7 1 2 7p r llr

r lp p p

T T TTTU U U U U U UT T T

. (3.18)

Page 49: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

43

Um die Schaltverluste zu minimieren, wird die Reihenfolge von zwei Randvektoren und

einem Nullvektor innerhalb einer Periode pT im Sektor 1S wie in der Tabelle 3.3

ausgegeben: war der letzte Schaltzustand 0U , dann soll die Reihenfolge sein

0 1 2 7U U U U .

Schalter 0U 1U 2U 7U

aS 0 1 1 1

bS 0 0 1 1

cS 0 0 0 1

Tabelle 3.3. Schaltzustände im Sektor 1S . Durch diese Reihenfolge muss bei jedem Zweig innerhalb einer Periode pT nur einmal

umgeschaltet werden, s. a. Bild 3.18. Es zeigt auch die zweite Hälfte von pT und es ist

deutlich, dass die Reihenfolge anders aussieht. Aus dem gleichen Grund muss die

Reihenfolge innerhalb der zweiten Hälfte anders ausgegeben werden: war der letzte

Schaltzustand 7U , ergibt sich die Reihenfolge 7 2 1 0U U U U .

Aus Gleichung (3.15) ist abzulesen, dass die Berechnung der Schaltzeiten ,r lT T nur von den

Beträgen der Vektoren ,r lU U abhängig sind.

Bild 3.18. Reihenfolge der Vektoren im Sektor 1S , [18, Seite 15].

Page 50: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

44

Der Vektor U folgt entweder aus den Komponenten , qdu u im Rotorkoordinatensystem oder

aus den Komponenten ,u u im Statorkoordinatensystem [18, Seite 18].

Die beiden Strategien zur Berechnung der Schaltzeiten ,r lT T können gleichwertig

angewendet werden. Hier wird die Berechnung der Schaltzeiten ,r lT T aus den Komponenten

,u u angewendet. Mit dieser Strategie werden die Komponenten ,u u aus den

Komponenten , qdu u gewonnen. Für die einzelnen Sektoren werden ,r lU U mit Hilfe der

Formeln aus Tabelle 3.4 berechnet.

Aus Tabelle 3.4 folgt, dass insgesamt nur drei Terme existieren.

13

13

23

a U U

b U U

c U

(3.19)

rU lU

1S 1Q 13

U U 23

U

2S 1Q 1

3U U 1

3U U

2Q 13

U U 13

U U

3S 2Q 23

U 13

U U

4S 3Q 13

U U 23

U

5S 3Q 1

3U U 1

3U U

4Q 13

U U 13

U U

6S 4Q 23

U 13

U U

Tabelle 3.4 Die Randkomponenten in Abhängigkeit von der Lage des Spannungsvektors.

Um die Phasenlage von U berechnen zu können, werden die folgenden Überlegungen

angestellt:

Page 51: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

45

1. Zunächst sollte die Lage des Spannungsvektors U ermittelt werden bzw. in welchem

der vier Quadranten er liegt. Dies wird durch die Vorzeichen von ,u u gewonnen,

siehe Bild 3.17 und 3.19.

2. Da die Beträge von rU und lU immer positiv sind und der Term b von Gleichung

(3.19) sein Vorzeichen bei jedem Sektorübergang wechselt, wird das Vorzeichen von

b betrachtet, um zu erkennen, in welchem Sektor des ermittelten Quadranten sich U

befindet [18, Seite 19].

Bild 3.19 zeigt einen Algorithmus, um das Tastverhältnis zu berechnen und dadurch den

benötigten Wert U zu implementieren [34, Seiten 272].

Bild 3.19. Berechnung des Tastverhältnisses für die PWM-Signale, um die gewünschte

Ständerspannung am Motor anzulegen, [34, Seite 272].

Page 52: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

46

3.6 Strom- und Drehzahlregelung mithilfe des Programms Matlab/Simulink

Im Folgenden wird die Simulation des kompletten Systems behandelt. Zuerst wird die

feldorientierte Drehzahlregelung mit einem Zweipunktstromregler durchgeführt, da sie

einfacher ist. Dadurch hat man nicht die Schwierigkeiten, die normalerweise mit der

Berechnung der Parameter des PI-Stromreglers auftauchen.

3.6.1 PI Drehzahlregler mit unterlagertem Zweipunktstromregler Das Bild 3.20 zeigt eine feldorientierte Drehzahlregelstruktur für die PMSM mithilfe des

grafischen Programms Simulink.

Bild 3.20. Unterlagerter Struktur einer Drehzahlregelung der PMSM mit Zweipunktstromregler.

Grundsätzlich besteht das System aus: PI Drehzahlregler, Zweipunktstromregler, Modell des

Umrichters, Modell der PMSM (gemäß Kap. 2.3.2, T_Load = Lastm gemäß Kap. 2.5) und den

entsprechenden Koordinaten-Transformationen.

Das Bild 3.21 zeigt einige Simulationsergebnisse. Der Drehzahlsollwert von 50 RPM ist als

eine Rampe eingeführt und eine Last in Höhe von ca. 63.1 Nm wird zu einem späteren

Zeitpunkt (0.8 Sek) angelegt. Ab diesem Punkt gibt es einen Einschwingvorgang im Verlauf

der Drehzahl und des Stroms qi bzw. der Ständerströme ( , ,a cbi i i ). Während des Einschwing-

vorgangs fällt die Drehzahl auf ca. 46.1 RPM ab. Das Bild 3.22 zeigt sowohl den Soll- und

Istwert vom Strom qi als auch den Ständerstrom ai .

Page 53: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

47

Bild 3.21. Drehzahlregelung mit unterlagertem Zweipunkstromregler.

Bild 3.22. Ströme bei der Drehzahlregelung mit unterlagertem Zweipunkstromregler.

Page 54: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

48

3.6.2 PI Drehzahlregler mit unterlagertem PI Stromregler Das Bild 3.23 zeigt eine feldorientierte Drehzahlregelstruktur für die PMSM mithilfe des

grafischen Programms Simulink; im Unterschied zum Bild 3.20 werden hier zwei PI

Stromregler statt eines Zweipunkstromreglers verwendet.

Bild 3.23. Strukturdiagramm für die Simulation einer Drehzahlregelung der PMSM mit unterlagerten PI-Stromreglern.

Neben der notwendigen Koordinaten- Transformation der Ist- und Stellgrößen ist die

Zweikomponentenstromregelung mit überlagertem Drehzahlregler im drehmomentbildenden

q –Zweig zu erkennen. Weil die d Komponente vom Strom keinen Beitrag zur

Drehmomentbildung liefert, wird der Sollwert mit Null vorgegeben. Das Bild 3.23 zeigt

deutlich auch ein Entkopplungsnetzwerk, das nach 3.3.5 aufgebaut ist, und die Stromfilter.

Diese Stromfilter sind Tiefpassfilter zur Eliminierung der pulsfrequenten Oberschwingungen

der ,d q Stromkomponente, die durch PWM Signale auftreten.

Grundsätzlich besteht das System aus: PI-Drehzahlregler, PI-Stromreglern, Entkopplungs

netzwerk, Modell der PMSM und den entsprechenden Koordinaten- Transformationen.

Page 55: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

49

Bild 3.24 zeigt die Soll- und Istwerte der Drehzahl und einen Sprung des Lastmoments. Der

Drehzahlsollwert von 50 RPM ist als eine Rampe eingeführt und eine Last in Höhe von ca.

63.5 Nm wird zu einem späteren Zeitpunkt (0.8 Sek) angelegt. Ab diesem Punkt gibt es ein

Unterschwingen und Überschwingen im Verlauf der Drehzahl und des Stroms qi bzw. der

Ständerströme( , ,a cbi i i ). Das Bild 3.25 zeigt den Soll- und Istwert vom Strom qi und den

Ständerstrom ai . Deutlich zu sehen ist die Übereinstimmung zwischen dem Soll- und Istwert

des Stroms qi .

Bild 3.24. Drehzahlregelung mit dem PI Stromregler.

Page 56: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

50

Bild 3.25. Ströme bei der Drehzahlregelung mit unterlagerten PI Stromreglern.

Page 57: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

51

4. Feldorientierte Regelung mit Positionssensor - Verifikation 4.1 Realisierung der Strom- und Drehzahlregelung mit dem Echtzeitsystem dSpace 1103 Bild 4.1 zeigt den Versuchsaufbau einer feldorientierten Drehzahlregelung einer PMSM.

Strom- und Drehzahlregelung sind auf dem digitalen Signalprozessorboard DS1103 der Firma

dSPACE implementiert. Der auf diesem Board eingesetzte Signalprozessor (Power PC

PPC604e, Motorola) verfügt über eine 64-bit Floating Point Unit mit Hardwaremultiplizierer.

Die PWM-Signale werden durch die Input-Output Karte (IO-Karte) an den Umrichter bzw.

die Eingänge der Transistortreiber gebracht.Die entsprechenden Messwerte –Ströme und

Drehzahl– werden über die IO-Karte an das Signalprozessorboard übertragen.

Als Hostrechner dient ein PC, auf dem alle benötigten Software-Entwicklungswerkzeugen

installiert sind. Diese Werkzeuge dienen als Hilfsmittel zum Reglerentwurf (Matlab) sowie

zur Kompilierung (C-Compiler, Linker, Ladeprogramm) und Steuerung (ControlDesk)

der DSP-Programme [23, Seite 4].

Bild 4.1. Versuchsaufbau der Drehzahlregelung einer PMSM.

ControlDesk ist eine ideale Software und der zentrale Baustein der Experiment-Software. Es

ermöglicht die Verwaltung und Instrumentierung der Experimente auf sehr komfortable Art

Page 58: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

52

und Weise. ControlDesk ist sehr einfach zu bedienen. Man kann die Experimentieroberfläche

per Drag & Drop gestalten und Möglichkeiten wie Kontextmenüs und Floating Windows

nutzen, um nur einige zu nennen. Das Bild 4.2 zeigt seine Oberfläche.

Neben dem Experiment-Manager und dem Plattform-Manager bietet ControlDesk ein

Instrumentation-Set, den Parameter Editor und grundlegende Automatisierungsmöglichkeiten.

Von Simulink kann man das Programm über eine integrierte Simulink-Schnittstelle auf das

dSpace Echtzeitsystem herunterladen und zwischen dem Simulink Programm und

ControlDesk einfach wechseln. Wenn das Programm auf dSpace erfolgreich heruntergeladen

wird, kann man alle Parameter des Programms über ControlDesk erreichen, ändern, anzeigen

und aufnehmen. Mit einem Softwareoszilloskop (Bild 4.3) ist die Aufzeichnung der

digitalisierten Messgrößen möglich, welche im Simulink Programm als Variable verfügbar

sind.

Bild 4.2. Oberfläche vom Programm ControlDesk.

Page 59: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

53

Bild 4.3. Aufzeichnung der digitalisierten Messgrößen mithilfe von ControlDesk. Das Diagramm in Bild 4.4 zeigt die Verknüpfungen zwischen ControlDesk, dSpace Board,

PMSM, Gleichstrommaschine (als Last verwendet) und Umrichter.

Page 60: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

54

Bild

4.4

Ver

knüp

fung

en z

wis

chen

Sof

t- un

d H

ardw

are

Page 61: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

55

4.2 Realisierung eines PI Drehzahlreglers mit unterlagertem Zweipunkstromregler

Das Bild 4.5 zeigt die Soll- und Istwerte von Drehzahl und Strom. Eine Last in Höhe von ca.

57 Nm wird zu einem späteren Zeitpunkt (ca. 0.38 Sek) angelegt. Ab diesem Punkt gibt es

ein Unter- und Überschwingen im Verlauf der Drehzahl und des Stroms qi . Das Bild 4.6 zeigt

sowohl die Soll-, und Istwert vom Strom qi als auch den Ständerstrom ai .

Bild 4.5. Drehzahlregelung mit unterlagertem Zweipunkstromregler. Lastsprung von 60 Nm bei 0.38 sek. Actual Iq ist gemäß (2.9) und (2.15) aus gemessenen Statorströme ,a bi i (siehe

Bild 4.4) berechnet.

Page 62: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

56

Bild 4.6. Drehzahlregelung mit unterlagertem Zweipunkstromregler wie Bild 4.5; zusätzlich werden der Statorstrom ai und der Ankerstrom AI der Pendelmaschine dargestellt.

4.2.1 Lastmoment Hier wird das Lastmoment ermittelt, das sich stationär für die Betriebsbedingungen gemäß

Bild 4.5 und 4.6 ergibt.

34iU V bei 150minU und 1.90fI A führt mit

iU c auf

34 2.1651502 60

c Vs

.

Im stationären Betrieb (siehe Bild 4.6) wird der Ankerstrom 26.5AI A gemessen. Damit

entwickelt die Pendelmaschine ein inneres Moment von

2.165 26.5 57.372DCm Nm .

Vom Kapitel 2 ergeben die Gleichungen (2.37), (2.38) und (2.39)

1 2L VDC V V DCM m m m m m ,

Page 63: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

57

1 2V V Vm m m

( )c d sign .

Vom Anhang B kann man die Werte von c und d für den Drehzahlbereich von 12 RPM

bis 47 RPM entnehmen:

0.141 .sec/c Nm rad , 5.28d Nm ,

250 0.141 50 5.28 6.01860Vm RPM Nm ,

57.372 6.018 63.39L VDCM m m Nm .

4.2.2 Vergleich mit den Simulationsergebnissen

Vergleicht man den Verlauf des Stromes qI nach Aufschalten der Last gemäß Simulation,

s. Bild 3.22, und gemäß Messung, s. Bild 4.6, so fällt eine gute Übereinstimmung auf.

Simulation: 8.85qI A bei 63.1LM Nm

Messung: 8.7qI A bei 63.39LM Nm

63.1(63.1 ) 8.7 8.6663.39qI Nm A A

In der Simulation sind die Parameter von der PMSM, Gleichstrommaschine und

Lastwiderstand als konstante Werte eingegeben, obwohl sie von der Temperatur stark

abhängig sind. Für eine noch genauere Simulation ist ein genauer Wert für den

Lastwiderstand erforderlich. Weitere Informationen über den Vergleich zwischen Simulation

und Messung findet man in [16].

4.3 Realisierung eines PI-Drehzahlreglers mit unterlagertem

PI-Stromregler

Hier wird die Wirkung eines Lastsprunges von etwa 60 Nm bei leerlaufender Maschine

untersucht. Das Bild 4.7 zeigt die Soll- und Istwerte von Drehzahl und Strom qi . Die Last in

Höhe von 60 Nm wird bei 0.14 Sek angelegt. Ab diesem Punkt gibt es ein Unterschwingen

und Überschwingen im Verlauf der Drehzahl und des Stroms qi bzw. der

Ständerströme , ,a b ci i i . Das Bild 4.8 zeigt die Soll- und Istwerte vom Strom qi und den

Ständerstrom ai .

Page 64: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

58

Bild 4.7. Drehzahlregelung mit PI Stromregler.

Bild 4.8. Ströme in der Drehzahlregelung mit PI Stromregler.

Page 65: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

59

5. Model Reference Adaptive Control (MRAC) 5.1 Übersicht über sensorlose Verfahren Der Verzicht auf den Drehgeber wird häufig erwogen, wenn konstruktive Gründe oder Kosten

dafür sprechen [24, Seite 310]. Damit entfällt die Montage und Verkabelung des Drehzahl-

oder Lagesensors, und es verringern sich somit die Zahl der Komponenten und die Kosten.

Im Gegensatz dazu erhöhen sich allerdings die Komplexität der Signalverarbeitung und die

Zuverlässigkeit [8, Seite 530]. In der sensorlosen Regelung werden Einrichtungen zur

Messung des Ständerstromes und meist auch der Ständerspannungen benötigt, die jedoch

keine mechanischen Zusatzeinrichtungen erforderlich machen. Ganz grundsätzlich soll

angemerkt werden, dass es inzwischen eine Vielzahl von Vorschlägen gibt, um dieses Ziel zu

erreichen. Dabei muss festgestellt werden, dass der Aufwand immer mehr steigt, je mehr der

Bereich um den Drehzahlbereich Null stationär und dynamisch genutzt werden muss.

Abbildung 5.1 gibt eine Übersicht über die zurzeit vorgeschlagenen Schätzverfahren [8, Seite

531].

Aus Bild 5.1 ist zu entnehmen [8, Seite 536], dass die erste Gruppe die nichtadaptiven

Verfahren bilden, dies sind nichtrückgekoppelte Ansätze.

Die zweite Gruppe beinhaltet die adaptiven Verfahren, die Rückkopplung zur Verbesserung

der geschätzten Größe haben. Dabei wird der Fehler zwischen den gemessenen und

geschätzten Größen genutzt.

In der dritten Gruppe werden die gewünschten Informationen durch die nichtlinearen

Eigenschaften der Drehfeldmaschine ermittelt.

In der vierten Gruppe werden nichtlineare Verfahren wie neuronale Oberflächen-

approximatoren eingesetzt.

In der fünften Gruppe werden hochfrequente Zusatz-Signale eingeprägt.

Im nächsten Abschnitt werden die adaptiven Verfahren behandelt.

Page 66: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

60

Bild 5.1. Eine Übersicht über Schätzverfahren für die Rotorposition, [8, Seite 531]. 5.2 Adaptive Verfahren Das prinzipielle Vorgehen bei den adaptiven Verfahren ist der Fehlervergleich von realen

Daten des betrachteten Systems und Modelldaten, wobei das Modell dem realem System

angepasst wird, d.h. das Modell ist adaptiv. Ein ähnliches Vorgehen ist der Vergleich von

dem Referenzmodell und dem adaptiven Modell (MRAC-Ansatz): Bild 5.2 [8, Seite 556] [48,

Seiten 457-469], [5, Seiten 390-392].

Die Adaptionsgesetze basieren jeweils auf einem der drei folgenden Verfahren [8, Seite 557]:

1. Hyperstabilitätskriterium.

2. Erweitertes Kalman-Filter (EKF).

3. Kleinste Fehlerquadrate.

Page 67: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

61

Die auf einem Hyperstabilitätsentwurf basierenden Verfahren können in zwei Untergruppen

aufgeteilt werden. Die erste Untergruppe sind MRAC-Verfahren, die ein Referenzmodell

(RM) und ein Adaptives Modell(AM) verwenden. Die zweite Untergruppe sind Luenberger-

Beobachter, die den realen Motor als Referenzmodell verwenden [8, Seite 558].

Im Folgenden wird ausführlich auf das adaptive Verfahren MRAC eingegangen.

Bild 5.2. Grundstruktur einer adaptiven Regelung. 5.3 MRAC-Verfahren Dieses Verfahren verwendet zwei Modelle. Das erste Model ist das Referenzmodell (RM),

welches das gewünschte Verfahren als Referenz vorgibt. Es wird aus Gleichungen hergeleitet,

die nicht den gesuchten Schätzwert enthalten. In diesem Fall ist es die Rotordrehzahl.

Das zweite Modell ist das adaptive Modell oder Adjustable Model (AM), welches sich an das

Referenzmodell adaptiert. Die Gleichungen von ihm enthalten die gesuchte Größe. Der Fehler

zwischen der Ausganggröße des Referenzmodells und der Ausganggröße des adaptiven

Modells stellt den Eingang für den Adaptionsalgorithmus dar, der die Drehzahlschätzung

ausführt [8, Seite 558,561]. Das Bild 5.3 zeigt das vollständige Blockschaltbild für dieses

Verfahren.

Im Adaptionsgesetz wird ein PI Regler eingesetzt, um den Fehler zwischen dem

Referenzmodell und dem adaptiven Modell zu Null zu machen.In der Auslegung des

Adaptionsgesetzes für MRAC ist die Stabilität des ganzen Systems zu beachten, damit die

geschätzte Drehzahl gegen die Solldrehzahl mit guter Dynamik konvergiert.

Page 68: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

62

Bild 5.3. Blockschaltbild eines MRAC Schätzers, s.a. (5.3). Mit Hilfe von Popov’s Kriterium für Hyperstabilität kann für die Drehzahlschätzung die

folgende Gleichung genutzt werden [22, Seite391]

ˆ IP

KKS

, (5.1)

wobei ˆ ˆ ˆˆ ˆqd

q qd dqd

X Xx x

x x x xx x bedeutet. (5.2)

Wird (5.2) in (5.1) eingesetzt, ergibt sich:

0

ˆ ˆ ˆ ˆ ˆT

q q q qP Id d d dK Kx x x x x x x x dt . (5.3)

Die Geschwindigkeit und die Stabilität, mit der das Adaptionsgesetz die gesuchte Drehzahl

ermittelt, hängt von der Wahl der Parameter des PI Reglers ab, der im Adaptionsalgorithmus

eingesetzt ist. Die geschätzte Drehzahl wird im adaptiven Modell verändert, bis der Fehler

zwischen dem Referenzmodell und dem adaptiven Modell Null bzw. ˆ ˆq qd dx x x x wird

und somit die geschätzte Drehzahl die tatsächliche Drehzahl des Rotors ist.

Page 69: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

63

Die Modellausganggrößen ˆ ,X X können z.B. Flusskomponenten, EMK oder Leistungen sein.

Je nachdem auf welcher Grundlage nun die Drehzahlschätzung vorgenommen wird,

unterscheidet man die drei Methoden hinsichtlich der verwendeten Modellausgangsgröße. In

dieser Arbeit wird die Wirkleistung genutzt [8, Seite 563].

5.3.1 MRAC-Verfahren " Wirkleistung " Ausganggröße ist die Leistung im drei-strängigen System

a a b b c cp t u i u i u i . (5.4)

Wegen der in Kap. 2 eingeführten Raumzeigerdefinitionen ist die Transformation

, , , ,0a b c nicht leistungsinvariant; wohl aber die Transformation , ,0

, ,0d q .

Es gilt

0 0( )p u i u i u i , (5.5)

0 0( )

q qd ddqp u i u i u i , (5.6)

( ) ( )dqp p (5.7)

( ) 2 ...3

p p für/ falls 0a cbi i i . (5.8)

In dieser Arbeit wird die Wirkleistung der PMSM im Statorkoordinatensystem ( )p als

Ausganggröße für das Referenzmodell benutzt und die Wirkleistung der PMSM im Rotor-

koordinatensystem ( )dqp als Ausganggröße für das adaptive Modell benutzt [2].

Die Spannungskomponenten , qdu u aus den Spannungsgleichungen (2.26) und (2.27) werden

in die Gleichung (5.6) eingesetzt, damit das adaptive Modell die Drehzahl enthält.

( ) .( ) ( )s q q s q q q qPMd d d d d ddq d dp R i L i L i i R i L i L i i

dt dt

Als Ausgang des adaptiven Modells wird ( )dqP zu ( )ˆ dqP . Eine Umformung der vorstehenden

Gleichung ergibt

2 2( )ˆ q ds q q q q qPMd d d d d

dq di dip R i i i L i L L L i idt dt

, (5.9)

ˆfp .

Page 70: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

64

Es bleibt anzumerken, dass der Statorwiderstand und die Induktivitäten benötigt werden. Das

Bild 5.4a zeigt das hier angewendete Verfahren: das adaptive Modell ist für die Parameter

der Maschine empfindlich. Dasselbe Verfahren wird im Bild 5.4b in einer anderen

Darstellung gezeigt, die ähnlich aussieht, wie der Stromregelkreis in Bild 3.11.

Die geschätzte Drehzahl wird im adaptiven Modell verändert, bis der Fehler , das ist die

Differenz der beiden Wirkleistungen Null wird: ( )( )ˆ dqp p . Daraus wird gefolgert, dass

die geschätzte Drehzahl die tatsächliche Drehzahl ist.

(a) MRAC-Verfahren im der klassischen Darstellung.

(b) MRAC-Verfahren im der neuen Darstellung.

Bild 5.4 MRAC-Verfahren mit Nutzung der Wirkleistungen.

Page 71: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

65

5.4 Sensorlose Regelung mit MRAC-Simulationen In diesem Kapitel wird das vorstehend entwickelte MRAC-Verfahren in einer Simulations-

umgebung getestet. Das Bild 5.5 zeigt eine Realisierung mithilfe des grafischen Programms

Simulink. Das Bild 5.6 zeigt sowohl die Soll- und Istwerte von der Drehzahl als auch einen

Sprung des Lastmoments. Der Drehzahlsollwert von 30 RPM ist als Rampe eingeführt.

Eine Last in Höhe von ca. 20 Nm wird zu einem späteren Zeitpunkt (4 sek) angelegt. Ab

diesem Punkt gibt es einen Einschwingvorgang für die Drehzahl. Während des

Einschwingvorgangs fällt die Drehzahl auf ca. 28 RPM ab. Das Bild 5.7 zeigt für den Betrieb

gemäß Bild 5.6 zusätzlich die Soll- und Istwerte vom Strom qi und den Ständerstrom ai .

Das Bild 5.8 zeigt die Wirkleistungsverläufe im dreiphasigen System , ,a b c , Stator- ,

und Rotorkoordinatensystem ,d q . Vergleicht man die Wirkleistungsverläufe gemäß Bild 5.8

so werden die Gleichungen (5.6) bis (5.8) bestätigt:

( ) ( ) ( )2 2 ;3 3

dq abca a c cb bp p p ui i u i u (5.10)

für den eingeschwungenen Zustand wird aus Bild 5.8 abgelesen

( ) ( ) ( )2 2 90.48 60.323 3

.dq abcp p p W

Die relative Abweichung zwischen dem Drehzahlistwert (aus dem Motormodell berechnet)

und der geschätzten Drehzahl für den Vorgang von Bild 5.6 ist im Bild 5.9 dargestellt.

Die Simulationsparameter von der verwendeten PMSM Maschine und der Pendelmaschine

(Lastmaschine) können von Anhang A entnommen werden.

Page 72: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

66

Bild

5.5

. Sim

ulin

k Pr

ogra

mm

für d

as M

RA

C-V

erfa

hren

aus

Kap

itel 5

.3.

Page 73: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

67

Bild 5.6. Sensorlose Drehzahlregelung mithilfe des MRAC-Verfahrens.

Bild 5.7. Ströme bei der sensorlosen Regelung gemäß Bild 5.6.

Page 74: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

68

Bild 5.8. Leistungsverläufe im , ,a b c , Stator- und Rotorkoordinatensystem gemäß Bild 5.6.

Bild 5.9. relative Abweichung zwischen dem Drehzahlistwert und der geschätzten Drehzahl.

Page 75: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

69

5.5 Messung der Strangspannungen Da die für Messungen genutzte PMSM Maschine keinen zugänglichen Sternpunkt hat, kann

man die Strangspannung nicht direkt messen. Die Strangspannungen sind erforderlich für das

Referenzmodell. Um dieses Ziel zu erreichen, werden entweder die verketten Spannungen

,ab bcu u oder die Potentiale , ,a cbV V V gemessen, siehe Bild 5.10. Mit Gleichung (5.11) oder

(5.12) kann man die Strangspannungen berechnen [36, Seite 45].

2 11 1 13 1 2

aab

bbc

c

u uu uu

, (5.11)

2 1 1

1 1 2 13 1 1 2

aa

b b

c c

Vuu Vu V

. (5.12)

Bild 5.10. Drei strängige PMSM am Transistorwechselrichter mit konstanter Zwischenkreisspannung.

Wegen der Pulsweitenmodulation ist ein digitales Filter für die gemessenen Spannungen

erforderlich, um den Ausgang des Referenzmodells, das ist ja die Wirkleistung ( )p ,

möglichst "sauber" zu bekommen.

5.6 Realisierung des MRAC-Verfahrens mit gemessenen Spannungen Bei der experimentellen Verifikation werden hier zunächst sowohl Ströme , ,a cbi i i als auch

die Potentiale , ,a cbV V V gemessen. Mithilfe der Gleichung (5.12) werden die Strang-

spannungen , ,a cbu u u berechnet. Anhand der Clark-Transformation, siehe Gleichung (2.16),

Page 76: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

70

werden , ,a cbi i i und , ,a cbu u u in , Komponenten umgerechnet, siehe Bild 5.11. Nun

kann man die Komponenten ,i i und ,u u in das Referenzmodell einführen. Um die

Stromwerte in das adaptive Modell einführen zu können, ist eine Umrechnung vom

Statorkoordinatensystem , zum Rotorkoordinatensystem ,d q erforderlich. Die

Parameter von der verwendeten PMSM Maschine und der Pendelmaschine (Lastmaschine)

können dem Anhang A entnommen werden. Für Durchführung dieser Methode ist die

Zwischenkreisspannung ZKU bei 65V eingestellt und der Erregerstrom fI der Lastmaschine

bei 1.7A eingestellt.

Bild 5.11 Blockschaltbild des MRAC Verfahrens mit gemessenen Spannungen.

Das Bild 5.12 zeigt die Drehzahlwerte für einen Hochlaufvorgang und einen Lastsprung. Der

Drehzahlsollwert von 30 RPM ist als eine Rampe eingeführt und eine Last in Höhe von ca.

20 Nm wird zu einem späteren Zeitpunkt (ca.3.4 sek) angelegt. Während des

Einschwingvorgangs fällt die Drehzahl auf ca. 24.9 RPM ab. Das Bild 5.13 zeigt zusätzlich

Stromwerte. Die relative Abweichung zwischen dem gemessenen Drehzahlistwert und der

geschätzten Drehzahl für den Vorgang von Bild 5.12 ist im Bild 5.14 dargestellt. Das Bild

5.15 zeigt eine Messung, wenn die Solldrehzahl von 30 RPM bis zu 20 RPM geändert wird.

Dadurch wird bewiesen, dass das MRAC-Verfahren bei Drehzahländerung stabil bleibt. Das

Bild 5.16 zeigt zusätzlich Stromwerte für den Betrieb gemäß Bild 5.15.

Page 77: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

71

Bild 5.12. Realisierung der sensorlosen Regelung mithilfe des MRAC Verfahrens.

Bild 5.13. Ströme bei der sensorlosen Regelung mithilfe des MRAC Verfahrens.

Page 78: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

72

Bild 5.14. relative Abweichung zwischen dem Drehzahlistwert und der geschätzten Drehzahl.

Bild 5.15. Sensorlose Drehzahlregelung mithilfe des MRAC-Verfahrens für die dargestellte Solldrehzahl.

Page 79: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

73

Bild 5.16. Sensorlose Drehzahlregelung mithilfe des MRAC-Verfahrens für die Solldrehzahl gemäß Bild 5.15.

5.7 Realisierung des MRAC-Verfahrens mit Spannung-Sollwerten Um die Zahl der Sensoren zu verringen, wird auf die Spannungsmessung verzichtet. Nicht aus

den gemessenen Spannungen werden die Spannungskomponenten ,u u ermittelt, sondern

sie werden aus dem Rechenmodell übernommen und in das Referenzmodell eingeführt.

Ansonsten bleibt die Realisierung dieses Verfahrens genau wie in 5.6 dargelegt. Das Bild

5.17 zeigt das MRAC-Verfahren mit Verwendung der Spannung-Sollwerten.

Bei niedrigen Drehzahlen wird die Sollspannung klein und somit haben die Spannungsabfälle

an den Halbleitern und die Totzeit eine größere Bedeutung. Deswegen ist eine Kompensation

dieser Einflüsse für die Sollspannung sehr wichtig. Daher werden zuerst die Effekte der

Totzeit und des Spannungsabfalls an den Leistungselektronikelementen am Beispiel eines

Umrichterzweigs untersucht.

Page 80: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

74

Bild 5.17. Blockschaltbild des MRAC Verfahrens mit Spannung-Sollwerten.

5.7.1 Auswirkung der Totzeit und des Spannungsabfalls Wie im Bild 5.19 oben gezeigt, ist bei jedem Transistor eine Freilaufdiode antiparallel

angeordnet. Diese ist sehr wichtig bei einer 0Hinduktiven 1HBelastung, um die kurzzeitigen

Spannungsspitzen zu vermeiden, ansonsten geht der Transistor kaputt. Der Strom der

induktiven Belastung erzeugt eine kurzzeitige Spannungsspitze beim Ausschalten.

Bei der Berechnung der Schaltzeiten für die Raumzeigermodulation wurde bis jetzt davon

ausgegangen, dass die Leistungselektronikelemente ideal sind. In der Praxis haben alle

verwendeten Leistungselektronikelemente einen Durchlasswiderstand sowie Ein- und

Ausschaltzeiten. Das Bild 5.18 zeigt die von der Strangstromrichtung abhängige

Ausgangsspannung sowie den Strangstrom bei 2Hinduktiver 3HBelastung.

Hat der Strom eine positive Richtung und ist der Transistor T1 eingeschaltet, fließt ein Strom

über den Transistor T1 zur Last, siehe Bild 5.18 und 5.19. Wenn nun der Transistor T1

ausgeschaltet wird, wird der Transistor T4 nach einer gewissen kurzen Zeit eingeschaltet. In

dieser kurzen Zeit bleiben die beiden Transistoren aus, um einen Kurzschluss über die zwei

Transistoren eines Brückenzweigs zu vermeiden. Der positive Strom fließt aber über die

Freilaufdiode D4 weiter. Jetzt, obwohl der Transistor T4 eingeschaltet ist, fließt der Strom

Page 81: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

75

trotzdem weiter über die Freilaufdiode D4, solange der Strom positiv ist. Ansonsten fließt der

Strom in die andere Richtung über den Transistor T4 [34, Seite 259]. Da die Ein- und Aus-

schaltzeiten der Halbleiter sehr klein bezogen auf die Totzeit sind, werden sie vernachlässigt.

Bild 5.18. Strangspannung gemäß der Stromrichtung.

Bild 5.19. Grundstruktur einer Brücke eines Umrichters mit Schaltzuständen und Stromrichtungen.

Wenn der Transistor ausgeschaltet ist, fließt der Strom sofort weiter über die Freilaufdiode.

Im Gegensatz dazu wird der Transistor nach einer kurzen Verzögerung (Totzeit)

Page 82: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

76

eingeschaltet. Während dieser Totzeit lässt die Freilaufdiode den Strom weiter fließen. Dies

führt zu einem Spannungsverlust für die Maschine: im Bild 5.19 in grau markiert.

Das Tastverhältnis wird kürzer (für den positiven Strom) oder länger (für den negativen

Strom) als seinem Sollwert entspricht. Deswegen gibt es einen Fehler zwischen dem

aktuellen Tastverhältnis und dem Sollwert. Abhängig von der Stromrichtung wird das

aktuelle Tastverhältnis entweder größer oder kleiner [34, Seiten 273 und 274]. Die

Strangspannung am Umrichterausgang au wird in die Gleichung (5.13) eingegeben gemäß

*a au u u . (5.13)

Damit au gleich mit *au wird, soll der Spannungsfehler u bei *

au zugefügt werden.

Gemäß Gleichungen (5.14) bis (5.17) ist der Spannungsfehler u abhängig von der Totzeit

des Umrichters, der Frequenz der Pulsweitmodulation und den Halbleiterparametern [34,

Seiten 273-274].

( )TotzeitSatAbfallu u u u sign i , mit (5.14)

( ) ( )

2CE Tj D Tj

Abfallr r

u i

, (5.15)

( ) ( )2

DCEsat tSat

U Uu sign i

, (5.16)

( )Totzeit Totzeit PWM ZKu f U sign i , (5.17)

:CEr Durchlasswiderstand des IGBT,

:Dr Durchlasswiderstand der Freilaufdiode,

( ) :CEsat tU Spannungsabfall an dem IGBT,

:DU Spannungsabfall an der Freilaufdiode,

:Totzeit Totzeit.

Mithilfe der Gleichung (5.14) werden die Spannungsfehler au , bu und cu wie folgt

berechnet:

( ) ,

( ) ,

( ) .

a aTotzeitSatAbfall

TotzeitSatb Abfall b

c cTotzeitSatAbfall

u u u u sign i

u u u u sign i

u u u u sign i

(5.18)

Nun erhält man die Spannungsfehler im , Koordinatensystem mithilfe der Clark-

Transformation, siehe (5.19).

Page 83: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

77

2 1 ,3 21 .3

a cb

cb

u u u u

u u u

(5.19)

Die Kompensierung des Spannungsfehlers erfolgt dann im , - Koordinatensystem wie

folgt: *

*

,.

u u uu u u

(5.20)

Bild 5.20. Blockschaltbild des MRAC Verfahrens mit Spannung-Sollwerten und

Kompensierung der Spannungsabfälle.

Die Fehlerkomponenten nach (5.19) werden zu den Statorkomponenten ,u u

hinzuaddiert, bevor die Sollwerte * *,u u an die Raumzeigermodulation (RZM) übergeben

werden, siehe Bild 5.20.

Je genauer die Gleichungen (5.15), (5.16) und (5.17) sind, desto besser wird die

Kompensation. Somit können auch bei niedrigeren Drehzahlen befriedigende Regelungs-

ergebnisse erreicht werden.

Page 84: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

78

Für die Berechnung der Durchlassverluste werden in den Datenblättern häufig außerdem die

Elemente ( 0)( )CE T TjU (Einsetzspannung) und ( )CE Tjr (Durchlasswiderstand) einer

Ersatzgeraden

( ) ( 0)( ) ( ) ( )CEsat t CE T Tj CE Tj tU U r Ic (5.21)

angegeben [41].

Die Einsetzspannung und der Durchlasswiderstand sind auch von der Temperatur abhängig

und werden in den Gleichungen (5.22) und (5.23) angegeben [41].

( )( ) 1.5 0.002( 25)jCE To TjU T , (5.22)

( ) 0.02 0.00008( 25)jCE Tjr T . (5.23)

Um einen genauen Wert für den Spannungsfehler zu erreichen, wird hier die Gleichung

(5.21) genutzt. Dies gilt analog auch für die Freilaufdioden.

5.7.2 Messergebnisse Das Bild 5.21 zeigt Mess- und Rechenwerte für einen Hochlauf mit nachfolgender

Lastaufschaltung. Der Drehzahlsollwert von 30 RPM ist als eine Rampe eingeführt und eine

Last in Höhe von ca. 20 Nm wird zu einem späteren Zeitpunkt (ca.3.8 sek) angelegt. Während

der Lastaufschaltung fällt die Drehzahl auf ca. 26.5 RPM ab. Das Bild 5.22 zeigt die

zugehörigen Stromwerte. Die relative Abweichung zwischen dem gemessenen Drehzahl-

istwert und der geschätzten Drehzahl ist im Bild 5.23 dargestellt.

Das Bild 5.24 zeigt sowohl den Soll-, Istwert und den geschätzten Wert der Drehzahl als auch

das Lastmoment, wenn die Solldrehzahl von 30 RPM bis zu 20 RPM geändert wird. Da die

Last von der Drehzahl abhängig ist, wird sie von ca.19.8 Nm bis zu ca. 11.6 Nm kleiner. Das

Bild 5.25 zeigt die Soll- und die Istdrehzahl, den geschätzten Wert der Drehzahl als auch den

Soll- und Istwert vom Strom qi und den Ständerstrom ai , wenn die Solldrehzahl von 30 RPM

bis zu 20 RPM geändert wird. Dadurch kann man feststellen, dass dieses Verfahren auch bei

Drehzahländerung stabil bleibt.

Page 85: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

79

Bild 5.21. Sensorlose Drehzahlregelung mithilfe des MRAC Verfahrens. Gegenüber der Messung Bild 5.12 sind die Statorspannungen nicht mehr gemessen, sondern als Rechenwerte verwendet.

Bild 5.22 Ströme bei der sensorlosen Regelung gemäß Bild 5.21.

Page 86: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

80

Bild 5.23. relative Abweichung zwischen dem gemessenen Drehzahlistwert und der geschätzten Drehzahl gemäß Bild 5.21.

Bild 5.24. Sensorlose Drehzahlregelung mithilfe des MRAC-Verfahrens für die dargestellte Solldrehzahl.

Page 87: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

81

Bild 5.25. Sensorlose Drehzahlregelung mithilfe des MRAC-Verfahrens für die Solldrehzahl gemäß Bild 5.24.

5.8 Vergleich zwischen Simulation und Messung Dieser Vergleich erfolgt im stationären Betrieb für den Hochlaufvorgang mit nachfolgender

Lastaufschaltung.

Simulation

Vom Bild 5.7 kann entnommen werden, dass der drehmomentbildende Strom 2.7q Ai

beträgt. Die relative Abweichung zwischen dem berechneten Drehzahlistwert und der

geschätzten Drehzahl ist kleiner als 1 %, siehe Bild 5.9.

Messung

Mit gemessenen Spannungen

Der drehmomentbildende Strom im Bild 5.13 beträgt 3.1q Ai . Die relative Abweichung

zwischen dem Drehzahlistwert und der geschätzten Drehzahl, siehe Bild 5.14, ist

kleiner als 6 %.

Page 88: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

82

Mit Spannung-Sollwerten

Der drehmomentbildende Strom im Bild 5.22 beträgt 3.8q Ai .

Die relative Abweichung zwischen dem Drehzahlistwert und der geschätzten Drehzahl, siehe

Bild 5.23, ist kleiner als 3 %.

In den dargestellten Ergebnissen fällt eine gute Übereinstimmung der geschätzten Drehzahl

mit der gemäß 5.4 berechneten auf. Aber die simulierten Ströme weichen von den

gemessenen Strömen ab. Der Grund dafür ist, dass in der Simulation kein Umrichtermodell

verwendet wird. Das bedeutet, dass die im Umrichter auftretenden Nichtlinearitäten in den

simulierten Ergebnissen vernachlässigt sind. Die Nichtlinearitäten haben die folgenden

Ursachen [6, Seiten 107-109]:

Spannungsfehler auf Grund der Totzeiten und Spannungsabfälle über den

Leistungstransistoren und Freilaufdioden.

Quantisierung der gemessenen Ströme und Spannungen.

Temperaturabhängige Motorparameter, z.B. Statorwiderstand und Dauermagnet.

Temperaturabhängige Eigenschaften der Halbleiter.

Darüber hinaus wird die Zwischenkreisspannung in der Simulation als konstant behandelt,

obwohl sie sich mit der Last ändert.

5.9 Drehzahlregelung mit MRAC-Ersetzung der Spannungsmessung

durch Rechenwerte

Gemäß Bild 5.13 und 5.22 ist deutlich zu erkennen, dass die Störungen der

geschätzten Drehzahl bei Verwendung der Sollspannung geringer sind als bei

Verwendung der gemessenen Spannungen, da die in das adaptive Modell eingeführten

Spannungen weniger Störungen haben und sinusförmig sind.

Für das MRAC-Verfahren mit den Sollspannungen sind die Parameter des PI-

Drehzahlreglers und des PI-MRAC Reglers sehr empfindlich für die Änderung der

Zwischenkreisspannung. Sie müssen nachjustiert werden, wenn die Zwischenkreis-

spannung geändert wird.

Page 89: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

83

6. Zusammenfassung und Schlussfolgerung Ziel der vorliegenden Arbeit war eine drehgeberlose feldorientierte Regelung einer High-

Torque permanenterregten Synchronmaschine bei niedrigen Drehzahlen. Zuerst wurde ein

Modell für die PMSM Maschine und die Last (Gleichstrommaschine) gebildet und mit der

feldorientierten Regelung simuliert. Dann wurden die Simulationsergebnisse mit

Messergebnissen verifiziert.

Für den sensorlosen Betrieb wurde eine adaptive Methode erarbeitet, die eine Online-

Adaption für die Drehzahl nutzt. Diese hat ein Referenzmodell und ein adaptives Modell. Im

Referenzmodell stecken zunächst Spannung und Strom als gemessene Größen. Im adaptiven

Modell steht nur der Strom als gemessene Größe sowie die geschätzte Drehzahl. Die

Auswahl der Ausgangsgröße sowohl für das Referenzmodell als auch das adaptive Modell ist

wichtig. In der vorliegenden Arbeit wurde die Wirkleistung als Ausgangsgröße gewählt.

Zur Bewertung des MRAC-Verfahrens wurde die Maschine zunächst in einem sensorlosen

Betrieb simuliert. Die Informationen über den Strom und die Spannung sind vom

Maschinenmodell in das Referenzmodell und das adaptive Modell übernommen.

Für die praktische Anwendung dieser Methode sind Trennverstärker für die Strommessung

und für die Spannungsmessung erforderlich. Zuerst wurden die Spannungen und Ströme als

Messwerte genutzt.

Da das Antriebskonzept speziell für den Einsatz im niedrigen Drehzahlbereich mit einer

möglichst geringen Zahl von Sensoren konzipiert ist, wurde vollständig auf die

Spannungsmessung verzichtet. Die Informationen über die Spannung sind direkt von der

Sollspannung in das Referenzmodell eingeführt.

Bei niedrigen Drehzahlen wird die Sollspannung klein und somit erlangen die

Spannungsabfälle an den Halbleitern und die Schalt- und Totzeit eine größere Bedeutung.

Deswegen ist eine Kompensation dieser Einflüsse sehr wichtig. Mit dieser Kompensation

kann die Maschine mit Drehzahlen bis zu 5 RPM betrieben werden - nur zwei

Strommessungen werden gebraucht. Die mit der erarbeiteten Winkel- und

Spannungssensorlosen Regelung erzielten Ergebnisse sind sehr zufriedenstellend.

Page 90: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

84

Die Betrachtung folgender Phänomene bleibt einer weiterführenden Arbeit vorbehalten.

Einfluss der Änderung der Zwischenkreisspannung auf die Auswahl der Parameter

des PI-Drehzahlreglers und des PI-MRAC-Reglers.

Sensorloses MRAC-Verfahren im regenerativen Arbeitsbereich.

Temperatureinfluss im Statorwiderstand und in der Flussverkettung PM auf das

Systemverhalten.

Wirkung des Spannungsabfalls auf Zuleitungen.

Rotorwinkelerkennung im Stillstand.

Genaueres Modell für die Leistungstransistoren und Freilaufdioden.

Automatische Auswahl und Berechnung der Parameter von PI-Drehzahlregler und PI-

MRAC-Regler. Ihre Parametereinstellung ist ziemlich schwer und langwierig, weil sie

sehr stark voneinander abhängig sind.

Page 91: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

85

Anhang A

Maschinendaten

Parameter der PMSM Maschine

Nenndrehzahl Nn 270 RPM

Nennstrom NI 13 A

Nennspannung NU 183V

Nenndrehmoment NM 120 Nm

Statorwiderstand (20 )cRs 2.44

Flussverkettung (20 )PM c 0.171 2 secV Polpaarzahl fp 20

Statorinduktivität q dL L 16 mH

Parameter der Gleichstromnebenschlussmaschine in Generatorbetrieb

Nenndrehzahl Nn 1500 RPM

Nennankerstrom ANI 109 A

Nennankerspannung ANU 460 V

Nennleistung NP 50 kW

Ankerwiderstand (20 )cAR 0.622

Nennerregerstrom fNI 3.75 A

Nennerregerspannung fNU 220 V

Ankerinduktivität AL 2.8mH

Das Trägheitsmoment J sowie die Koeffizienten c und d für den verwendeten

Maschinensatz wird von Anhang B entnommen.

Page 92: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

86

Parameter des verwendeten Maschinensatz Trägheitsmoment J 22.398 kg m Koeffizient c 0.176 /Nm sek rad Koeffizient d 5.13Nm

Für die praktische Implementierung sind weiterhin folgende Daten wichtig:

Die Abtastung für die Strommessung soll mit den PWM-Signalen synchronisiert

werden, um die Welligkeit bzw. die Störung der gemessenen Ströme zu verringen,

siehe 3.3.3. Da die in das adaptive Modell eingeführten Ströme möglichst störungsfrei

sein sollen, braucht man noch einen kleinen Filter.

Aus gleichem Grund sollen die gemessenen Spannungen auch gefiltert werden.

Programmabtastzeit 50ST sek Zwischenkreisspannung 65ZKU V PWM-Frequenz 18PWMf kHz Erregerstrom von der Lastmaschine 1.7fI A

Flusskonstante der Lastmaschine 1.951.7f V sekc I A

Page 93: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

87

Anhang B Bestimmung des Massenträgheitsmoments für den Maschinensatz

aus MBT210C, Messwelle und Pendelmaschine

B1 Die Methode Ausgangspunkt/Grundlage ist gemäß [29] die Bewegungsgleichung

M LdJ M Mdt

. (B.1)

Verwendet wird ein Auslaufversuch, für den gilt 0MM .

Folglich wird die zu messende Größe t wirksam als

LdJ Mdt

. (B.2)

Um aus der Messkurve t , s. Bild B.1, das Massenträgheitsmoment J bestimmen zu

können, muss man für mindestens einen Winkelgeschwindigkeitswert (im Folgenden 1

genannt)

1. Die Steigung 1

ddt

aus der Messkurve t bestimmen.

2. Im diesem Punkt 1LM kennen.

Damit hat man 1

1

LMJ

ddt

gefunden.

Wie ermittelt man nun die benötigten Werte 1

ddt

und 1LM ?

Ermittlung von1

ddt

1

ddt

ist die Steigung der Messkurve im Punkt 1 . Wird nun n t gemessen, so folgt mit

der aus der Messkurve ermittelten Zeit T, siehe Bild B2:

1

1 1

2 2n

nd dndt dt T

mit 1Un Sec . (B.3)

Page 94: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

88

Um nun die Tangente gut zeichnen zu können, muss der Auslauf bei einer Drehzahl beginnen,

die etwas größer als 1n ist, z.B. 11.1 ... 1.2 n .

Bild B.1. Auslaufversuch, Messkurve t . Bild B.2. Auswertung des Auslaufversuches.

Ermittlung von 1LM

1LM wird bestimmt, indem der Maschinensatz z.B. von der Gleichstrommaschine mit der

Winkelgeschwindigkeit 1 angetrieben wird. Die Antriebsmaschine bringt dann gerade das

im Auslaufversuch wirksame Moment LM auf. Es ist der folgender Versuch durchzuführen:

Einstellung der Winkelgeschwindigkeit 1 mit der Gleichstrommaschine.

Messgrößen : Ankerspannung AU

Ankerstrom AI

Feldstrom Nf fI I

Nach der Messung von AU und AI wird die Drehzahl durch Steigerung von AU erhöht,

dabei darf der Erregerstrom fI gegenüber der Messung bei 1 nicht geändert

werden. Bei Erreichen von 11.1 ... 1.2 wird die Ankerspannung

abgeschaltet, und die Messung des Auflaufversuchs beginnt. Nur die Ankerspannung

wird abgeschaltet, nicht der Feldstrom!

Auswertung des Versuchs bei 1

Gemäß [30] gilt

,iA A AU R I U

,i fU c I

Page 95: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

89

.i f AM c I I

Hieraus folgt

21A A A A f AU I R I c I I

1iM .

Wegen i LM M folgt schließlich

2

11

A A A AL

U I R IM

(B.4)

mit den Messgrößen ,A AU I bei 1 .

AR ist der resultierende Ankerwiderstand der Gleichstrommaschine, gegebenenfalls unter

Einbeziehung von Vorwiderständen.

B2 Messung des Ankerwiderstandes der mit der PMSM gekoppelten Gleichstrommaschine

Bei langsamer gleichmäßiger Drehung der nicht erregten Pendelmaschine wird eine

Gleichspannung angelegt. Tabelle B.1 gibt die Messwerte DCUA , DCIA und DCP . Daraus wurde

der resultierende Ankerwiderstand AR

/A DC DCR P IA (B.5)

berechnet.

Wegen

( )A a A ABÜU R I U I ,

2ABÜA A a A A A a ABÜ

A

U IU I R I U I I R I

I

setzt sich der resultierende Ankerwiderstand AR aus dem Ohm´schen Anteil aR und einem

Anteil aus der Bürstenübergangsspannung zusammen. Das erklärt den Verlauf von A DCR IA

im Bild B.3. Die Kurve A DCR IA wird durch ein Polynom vierter Ordnung angenähert, damit

die Werte des Widerstandes für beliebige Ankerstromwerte ermittelt werden können.

Page 96: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

90

Messung ,DCUA V ,DCIA A ,DCP W ,AR

1 1.6507 0.8022 1.3242 2.05772 2.6306 1.61 4.2352 1.63393 2.6047 2.5609 6.6702 1.01714 3.0174 3.1622 9.5416 0.95422 5 2.7559 3.6971 10.189 0.74541 6 3.0655 4.2544 13.042 0.72054 7 3.2738 4.9473 16.196 0.66174 8 3.1713 5.6925 18.053 0.557119 3.3979 6.4721 21.992 0.52501

10 3.3147 7.2112 23.903 0.45966 11 3.559 8.0523 28.658 0.44199 12 3.7599 8.9193 33.536 0.42155 13 3.8222 9.7712 37.347 0.39117

Tabelle B.1. Messgrößen und Bestimmung des resultierenden Ankerwiderstandes AR .

Bild B.3. Resultierender Ankerwiderstand und Approximation durch ein Polynom vierter Ordnung.

Page 97: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

91

B3 J-Berechnung für den untersuchten Maschinensatz Die Auslaufkurve n t wurde für drei Drehzahlpunkte ausgewertet. Tabelle B.2 zeigt die

reinen Messwerte der stationären Messung; in Tabelle B.3 sind die aus den Messgrößen

ermittelten Werte für , ,A LT R M und schließlich J zusammengestellt. In Tabelle B.3 wurde

LM als

2

1

DC DC A effL

UA IA R IAM

(B.6)

berechnet.

Tabelle B.2. Messergebnisse für drei Drehzahlwerte.

Das Bild B.4 zeigt den Auslaufversuch und die Ermittlung der Zeit T gemäß Bild B2.

Messung 1 2 3 ,n U min 98.966 200.900 272.378

,DCP W 75.366 158.039 224.434

,DCIA A 2.342 2.537 2.692

,effIA A 2.357 2.572 2.758

,DCUA V 32.181 62.298 83.386

,effUA V 32.181 62.298 83.386,T sek

,RA 2, ed dt rad S k

,LM Nm

2,J kgm

2,MittelJ kgm

Page 98: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

92

Tabelle B.3. Bestimmung des Trägheitsmoment J für die drei Drehzahlwerte.

Bild B.4. Auslaufversuch der Gleichstrommaschine mit der angekoppelten PMSM-Maschine.

Messung 1 2 3 ,n U min 98.966 200.900 272.378

,DCP W 75.366 158.039 224.434

,DCIA A 2.342 2.537 2.692 ,effIA A 2.357 2.572 2.758

,DCUA V 32.181 62.298 83.386 ,effUA V 32.181 62.298 83.386

,T sek 3.675 7.09 9.136,RA 1.203 1.109 1.058

2, ed dt rad S k - 2.8201 - 2.9673 - 3.1221

,LM Nm 6.627 7.1634 7.5864 2,J kgm 2.35 2.4141 2.4299

2,MittelJ kgm 2.398

Page 99: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

93

B4 Ermittlung der Koeffizienten c und d Die Last wurde im Abschnitt 2.4 als (2.37) modelliert. Die Koeffizienten c und d sollen hier

bestimmt werden.

( )Vm c d sign . (B.7)

B4.1 Auslaufversuch zur Bestimmung von c, d Gemessen wird ( )n t mit einer Anfangsdrehzahl An . Daraus folgt dann das Verlustmoment

Vm bestimmt als

Vdm Jdt , (B.8)

mit J aus dem Vorversuch gemäß B3.

Die Anfangsdrehzahl An wird so gewählt, dass der beabsichtigte Drehzahl-Regelbereich

überdeckt wird. Aus zwei Messpunkten folgen schließlich c und d:

1 2

1 2,

( )V Vm mc

1 1Vd m c .

B4.2 Bestimmung von c, d für den Drehzahlbereich von 15 RPM bis 45 RPM

Das Bild B.5 zeigt einen Ausschnitt aus dem Drehzahlbereich, in dem die Reibungs-

koeffizienten berechnet werden.

Bild B.5. Bestimmung der Reibungskoeffizienten für einen Drehzahlbereich von 15 bis 45 RPM.

1 1 11 2 1 2

2 2 2

( )( ) ,

( )V

V VV

m c d signm m c

m c d sign

Page 100: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

94

1

2 235 552.09460 60 2.447 /

11.64 10.79 0.856rad Sekd

dt

,

2

2 210 251.5760 60 2.293 /

12.775 12.09 0.685rad Sekd

dt

,

11

2.398 2.447 5.868V Nmdm Jdt

,

22

2.398 2.293 5.499V Nmdm Jdt

,

1 2

1 2

5.868 5.499 0.369 0.176 . /2 2 2.09440 2060 60

( )V V Nm Sek rad

m mc

,

1 125.868 0.176 40 5.1360V Nmd m c

.

B4.3 Bestimmung von c, d für den Drehzahlbereich von 12 RPM bis 47 RPM

Das Bild B.6 zeigt einen anderen Ausschnitt aus dem Drehzahlbereich, in dem die Reibungs-

Koeffizienten berechnet werden.

Bild B.6. Bestimmung der Reibungskoeffizienten für einen Drehzahlbereich von 12 bis 47 RPM.

1

2 232 4760 60 2.447 /

11.769 11.127rad Sekd

dt

Page 101: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

95

2

2 212 2760 60 2.324 /12.676 12

rad Sekddt

11

2.398 ( 2.447) 5.868V Nmdm Jdt

22

2.398 2.324 5.573V Nmdm Jdt

1 2

1 2

5.868 5.573 0.295 0.141 .sec/2 2 4.188 2.09440 2060 60

( )V V Nm rad

m mc

1 125.868 0.141 40 5.2860V Nmd m c

.

Zunächst sieht man einen großen Unterschied zwischen den beiden Ergebnissen von c, d in

den Bestimmungen 1 und 2. Damit man die Auswirkung davon sehen kann, wird das

Verlustmoment bei der gleichen Drehzahl durch die Gleichung (B.7) gerechnet.

Das Verlustmoment im Drehzahlbereich von 15 RPM bis zum 45 RPM

230 0.176 30 5.13 5.6860V RPM Nmm

Das Verlustmoment im Drehzahlbereich von 12 RPM bis zum 47 RPM

230 0.141 30 5.28 5.7260V RPM Nmm

Folglich kann man davon ausgehen, dass der Unterschied zwischen den beiden Ergebnissen

keine große Auswirkung auf das Verlustmoment hat. Deswegen kann man die beiden

Wertekombinationen von c, d zum Simulieren benutzen.

Page 102: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

96

Formelzeichen c dickflüssiger Reibungsfaktor, gemäß Rbgm c d

c Flusskonstante der Gleichstrommaschine

d Trockenreibung, gemäß Rbgm c d

oiF Übertragungsfunktion des offenen Stromregelkreises

oF Übertragungsfunktion des offenen Drehzahlregelkreises

i Stromraumzeiger , ,a b ci i i Strangströme

,i i Stromkomponenten in , Koordinaten

,d qi i Stromkomponenten in ,d q Koordinaten ( )Si Stromraumzeiger in Statorkoordinaten( )ri Stromraumzeiger in Rotorkoordinaten ( )ki Stromraumzeiger in allgemeinen Koordinaten

fI Erregerstrom der Gleichstrommaschine

AI Ankerstrom der Gleichstrommaschine

DCIA Mittelwert des Ankerstroms

effIA Effektivwert des Ankerstroms

J Axiales Massenträgheitsmoment des Rotors

PK Verstärkung im Proportional-Zweig des PI-Stromreglers

IK Verstärkung im Integral-Zweig des PI-Stromreglers

PK Verstärkung im Proportional-Zweig des PI- Drehzahlreglers

IK Verstärkung im Integral-Zweig des PI- Drehzahlreglers

TK Drehmomentkonstante der PMSM

AL Ankerinduktivität der Gleichstrommaschine

, qdL L Induktivität der PMSM in ,d q Koordinaten

Ls Statorinduktivität der PMSMm , MM Inneres Moment

Lastm , LM Lastmoment

1Vm Verlustmoment der PMSM

2Vm Verlustmoment der Gleichstrommaschine

Vm Gesamtes Verlustmoment

DCm Inneres Moment der Gleichstrommaschine n Drehzahl

Nn Nenndrehzahl

fp Polpaarzahl der Erregung

p , ( )abcp Wirkleistung im dreisträngigen System

Page 103: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

97

p Wirkleistung der PMSM in , Koordinaten

( )dqp Wirkleistung der PMSM im Rotorkoordinatensystem

DCP Mittelwert der aufgenommenen Leistung

CEr Durchlasswiderstand des IGBTs

Dr Durchlasswiderstand der Freilaufdiode

Rs Strangwiderstand

AR Ankerwiderstand der Gleichstrommaschine

LR Lastwiderstand

s Laplace-Faktor

UT Ersatzzeitkonstante

samplingT Abtastzeit

giT Zeitkonstante des Stromfilters

iT Summe der kleinen Zeitkonstanten

AT Elektrische Zeitkonstante

nT Nachstellzeit des PI-Stromreglers

nT Ersatzzeitkonstante im Drehzahlregelkreis

ersT Ersatzzeitkonstante des Stromregelkreises

gnT Zeitkonstante des Drehzahlfilters

nT Nachstellzeit des PI-Drehzahlreglers

pT Pulsperiode eines PWM-Signales pT Hälfte der Pulsperiode eines PWM-Signales

u Spannungsraumzeiger, ,a b cu u u Strangspannungen

,u u Spannungskomponenten in , Koordinaten

,d qu u Spannungskomponenten in ,d q Koordinaten

zkU Zwischenkreisspannung

PU Polradspannung

AU Ankerspannung der Gleichstrommaschine

Komu Spannungsabfall am Kommutator

rU Rechte Komponente des Raumzeigers

lU Linke Komponente des Raumzeigers

iU Induzierte Spannung der Gleichstrommaschine

BÜU Bürstenübergangsspannung

DCUA Mittelwert der Ankerspannung

abu Verkette Spannung

Page 104: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

98

CEsatU Spannungsabfall an dem IGBT

DU Spannungsabfall an der Freilaufdiode

sX Synchronreaktanz vom Stator sZ Impedanz der Statorwicklung

Griechische Symbole

u Spannungsfehler Flussraumzeiger

, ,a b c

Flussverkettung des jeweiligen Stranges

s Winkel zwischen dem Statorkoordinatensystem und dem Raumzeiger

r Winkel zwischen dem Rotorkoordinatensystem und dem Raumzeiger

k Winkel zwischen dem allgemeinen Koordinatensystem und dem Raumzeiger

k Winkel zwischen dem Stator- und dem allgemeinen Koordinatensystem

Rotorposition

up Polradwinkel zwischen der Polradspannung und der Statorspannung

i Stromwinkel zwischen dem Statorstrom und der Statorspannung

PM Rotorfluss

md Komponente des Rotorflusses bzgl. der d-Achse

mq Komponente des Rotorflusses bzgl. der q-Achse

m Rotorflussvektor

T Taktzeit des Drehzahlreglers

Totzeit Totzeit des Umrichters

Fehler zwischen dem Referenzmodell und dem adaptiven Modell

Geschätzte mechanische Winkelgeschwindigkeit des Rotors

Mechanische Winkelgeschwindigkeit des Rotors Elektrische Kreisfrequenz Indizes

, ,a b c Strangbezeichnungen

, Komponenten in Statorkoordinaten

,d q Komponenten in Rotorkoordinaten s Kennzeichnung bzgl. Stator oder Statorkoordinatenr Kennzeichnung bzgl. Rotor oder Rotorkoordinatenk Kennzeichnung bzgl. allgemeinen Koordinaten Schätzwert einer Variablen* Führungsgrößelin lineare Komponentenkopp gekoppelte Komponenten

Page 105: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

99

Literaturverzeichnis

[1] Grasblum, P.: 56F8000 DSC Platform and how it is Ideal for both Cost Effective Motor Control & Digital Power Conversion Applications, Freescale-Paris 2006.

[2] Sahhary B., Abbas H.: On-line speed estimation based on ANN for PMSM Sensorless speed Control, The 27th IASTED International Conference on Modelling, Identification, and Control 2008, Innsbruck, Österreich.

[3] Fröher, F.: Orttenburger, F.: Einführung in die elektronische Regelungstechnik. Siemens Aktiengesellschaft 1976.

[4] Vas, P.: Vector Control of AC Machines. 4HOxford University Press 1990.

[5] Bose, Bimal K.: Power electronics and variable frequency drives. 5HIEEE Press 1996.

[6] Sammoud, H.: Sensorreduktion bei der Regelung eines permanenterregten Synchronmotors mit großem Feldschwächbereich (Doktorarbeit). VDI 2002 .

[7] Grasblum, P.: 3-Phase PM Synchronous Motor Control with Quadrature Encoder Using DSP56F80x (AN1917), Freescall 2005.

[8] Schröder, D.: Elektrische Antriebe-Regelung von Antriebsystemen. Springer 2001.

[9] Alahakoon, S.: Sensorless Control of Permanent Magnet Synchronous Motors for High Speed Applications. Royal Institute of Technology, Stockholm 2000.

[10] Crowder, M.R.: Electric Drives and their Controls. Clarendon Press Oxford 1995.

[11] Krishnan, R.: Electric Motor Drives, Modeling, Analysis and Control. Prentice Hall 2001.

[12] Project Report, Group 817: Sensorless Control for PMSM, Aalborg University 2003.

[13] Gerling, D.: Vorlesungsskript ``Elektrische Maschinen und Antriebe ІІ ``(v2.0), Universität der Bundeswehr München.

[14] Bolte, E.: Vorlesungsskript "Dynamischer Betrieb von elektronisch kommutierten , Permanentmagnet erregten elektrischen Maschinen ", Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg.

[15] Brosch, P.: Mechatronische Antriebssysteme, Verlag Moderne Industrie 2000.

[16] Bolte E., Sahhary B.: Dynamic Performance Analysis of Permanent Magnet Synchronous Machines, ACEMP & ELECTROMOTION 2007, 10-12 September, Bodrum, Türkei.

[17] Budig, P. K.: Stromrichtergespeiste Drehstromantriebe.VDE Verlag 2001.

[18] Quang, N.P. , Dittrich, J.: Praxis der feldorientierten Drehstromantriebsregelung. Expert verlag 1999.

Page 106: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

100

[19] Riefenstahl, U.: Elektrische Antriebstechnik. B.G. Teubner Stuttgart 2000.

[20] Schröder, D. :Elektrische Antriebe 4, Leistungselektronische Schaltungen. Springer 2001.

[21] Weigel, J. : Modellbildung und parameteradaptive hochdynamische Regelung eines Permanenterregten Synchronlinearmotors. TU Darmstadt 2004.

[22] Bose, B. K.: Modern Power electronics and AC Drives. Prentice Hall PTR 2001.

[23] LEA : Digitale Regelung der Synchronmaschine mit dem Signalprozessorboard DS1103 von dSpace. Lehrstuhl für LEA , Universität Paderborn.

[24] Schönfeld, R., Hofmann W.: Elektrische Antriebe und Bewegungssteuerungen. VDE 2005.

[25] Vas, P.: Electrical Machines and Drives. 6HOxford University Press 1992.

[26] Brejl, M., Princ, M.: Using the PMSM Vector Control eTPU Function. Application Note (AN2972), Freescale 2006.

[27] Holtz, J.: Vorlesungsskript EMAD "Dynamic Analysis of Induction motor ". Universität Wuppertal.

[28] S. M. Zeid, T.S. Radwan and M .A. Rahman: Real-Time Implementation of Multiple Feedback loop Control for a Permanent Magnet Synchronous Motor Drive. 1999.

[29] Bolte, E.: Vorlesungsskript EMA Kap.4 "Bewegungsgleichung und Stabilität". Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg.

[30] Bolte, E.: Vorlesungsskript EMA Kap.12 "Gleichstrommaschinen". Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg.

[31] Bolte, E.: Praktikum EMA AS2 "Bewegungsgleichung und Stabilität". Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg.

[32] Holtz, J.: The Representation of AC Machine Dynamics by Complex Signal Flow Graphs. IEEE Transactions on Industrial Electronics 1995.

[33] Toliyat, H.: Flywheels Energy Storage Systems for Land/Sea/Space Applications. 5th Annual Winter Workshop 2006, U.S. Army Vetronics institute.

[34] Terörde, G.: Electrical Drives and Control Techniques. Uitgeverij Acco 2004.

[35] Holtz, J.: Sensorless Control of Induction Motor Drives, Proceeding of the IEEE 2002, Wuppertal, Germany.

[36] Bolte, E.: Vorlesungsskript EMA Kap.10 "Asynchronmaschinen". Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg.

Page 107: Elektrische Antriebe mit dauermagneterregten Maschinen …edoc.sub.uni-hamburg.de/hsu/volltexte/2009/1904/pdf/2009_Sahhary.pdf · Elektrische Antriebe mit dauermagneterregten ...

101

[37] Wüest, D., Jenni, F.: Steuerverfahren für selbstgeführte Stromrichter. Teubner 1995.

[38] Novotny, D.W., Lipo, T. A.: Vector control and dynamics of AC drives. Oxford 1996.

[39] Yeadon, W. H., Yeadon, A. W.: Handbook of small electric motors. McGraw-Hill 2001.

[40] Skvarenina, T. L.: The Power Electronics Handbook. CRC Press 2002.

[41] Datenblattangaben für den IGBT-Baustein SKM 50 GB 123 D, Semikron.

[42] Kempkes, J.: Vorlesungsskript für Ingenieurinformatik " Echtzeitsimulation mechatronischer Systeme ". Fachhochschule WS 2006.

[43] Emadi, A., Ehsani, M., Miller, J.: Vehicular Electric Power Systems.Marcel Dekker 2004.

[44] Brosch, P.: Moderne Stromrichterantriebe.Vogel 2002.

[45] Rashid, M.: Power electronics Handbook: Devices, Circuits and Applications. Elsevier 2006.

[46] Bolte, E.: Vorlesungsskript EMA Kap.13 "Synchronmaschinen". Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg.

[47] SEW EURODRIVE: Praxis der Antriebstechnik "Band 7". Ausgabe 4 , 1997.

[48] Vas, P.: Sensorless Vector and Direct Torque Control. Oxford University Press 1998.


Recommended