Ultracool Gases far from Equilibrium - Max Planck Societybec10/Gasenzer_Lecture3.pdf · BEC10...

Post on 10-Mar-2021

1 views 0 download

transcript

Ultracool Gasesfar from Equilibrium

Thomas Gasenzer

Institut für Theoretische Physik Ruprecht-Karls Universität Heidelberg

Philosophenweg 16 • 69120 Heidelberg • Germany

email: t.gasenzer@uni-heidelberg.dewww: www.thphys.uni-heidelberg.de/~gasenzer

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Lecture 1: IntroductionUltracold gases & their dynamics, mean-field theory

Lecture 2: Non-equilibrium QFTFunctional approach, 2PI effective action.

Lecture 3: Far-from-equilibrium DynamicsThermalization. Turbulence & critical dynamics.

Overview

Lecture 3Far-from-equilibrium dynamics

3.1 Equilibration of a1D Fermi gas

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Elastic scattering of classical point-like particles in d dimensions

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Elastic scattering of classical point-like particles in one dimension

Before collision:

p − p

After collision:

− p p

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Elastic scattering of quantum point-like particles in one dimension

Before collision:

p − p

After collision:

− p p

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Equilibration in a quantum system

Hamiltonian can be diagonalised.

Dephasing only (“Decoherence”).

Suppose: Recurrence time large.

System approaches thermal ensemble?

Special rôle of integrable systems

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Heuristic StatisticsJaynes' maximum-entropy principle [PR 106, 620 (57)] :

Generalised Gibbs ensemble at t :

Maximisation of entropy under constraints for macroscopic observables.

fixes

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Heuristic StatisticsJaynes' maximum-entropy principle [PR 106, 620 (57)] :

Generalised Gibbs ensemble at t :

Maximisation of entropy under constraints for macroscopic observables.

Also: Rigol et al., PRL 98, 050405 (07), P. Reimann, PRL 101, 190403 (08).

fixes

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Rôle of conserved quantitiesJaynes' maximum-entropy principle [PR 106, 620 (57)] :

Generalised Gibbs ensemble at t :

Question: What are the operators for the conserved quantities ?

Answer: Is easy only for integrable systems.

See, e.g., Rigol et al., PRL 98 (07); Cazalilla, PRL 97 (06); Barthel and Schollwöck, PRL 100 (08)

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Equilibration of the 1D Fermi gasNumber of particles n�(p,t) with momentum p:

M. Kronenwett & TG, 1006.3330 [cond-mat.quant-gas]

See also (for relativist. Fermions)Berges, Borsanyi, Serreau,NPB (03)Berges, Borsanyi, WetterichPRL (04)

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Equilibration of the 1D Fermi gasNumber of particles n�(p,t) with momentum p:

M. Kronenwett & TG, 1006.3330 [cond-mat.quant-gas]

See also (for relativist. Fermions)Berges, Borsanyi, Serreau,NPB (03)Berges, Borsanyi, WetterichPRL (04)

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Equilibration of the 1D Fermi gasInverse slope function: Thermalisation?

M. Kronenwett & TG, 1006.3330 [cond-mat.quant-gas]

See also (for relativist. Fermions)Berges, Borsanyi, Serreau,NPB (03)Berges, Borsanyi, WetterichPRL (04)

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Equilibration of the 1D Fermi gasInverse slope function: Varying the total energy

M. Kronenwett & TG, 1006.3330 [cond-mat.quant-gas]

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Equilibration of the 1D Fermi gasVarying the total energy: Chemical potential

M. Kronenwett & TG, 1006.3330 [cond-mat.quant-gas]

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Equilibration of the 1D Fermi gasHigh-momentum tails: Power-law distributions

M. Kronenwett & TG, 1006.3330 [cond-mat.quant-gas]

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Fluctuation-dissipation theoremA grand-canonical stateimplies the relation

M. Kronenwett & TG, 1006.3330 [cond-mat.quant-gas]

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Near Equilibrium:Fluctuation-dissipation relation QFT

[A. Branschädel & TG, JPB 41, 135302 (08)]

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Near Equilibrium:Linear Response QFT

[A. Branschädel & TG, JPB 41, 135302 (08)]

Kinetic (Boltzmann) case:Quasiparticles with well-defined energy

p0 = ωp

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

for 2-time time-ordered Green function, carrying two-fold information:

G.ab(x,y) = TC†

a(x)b(y)

= F.ab(x,y) – sgnC(x0–y0) ab(x,y)

where x = (x0, x)

Bosons: [(t,x),†(t,y)] = (x – y)

Dynamical field theoryQFT

i2

statistical ... spectral function

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Equilibration of the 1D Fermi gasEnergy conservation:

M. Kronenwett & TG, 1006.3330 [cond-mat.quant-gas]

3.2 Turbulence& Critical Dynamics

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Nonequilibrium Stationary Dynamics

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Turbulence

Kinetic energy cascade

large scales (source) → small scales

→ dissipation (sink)

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Richardson Cascade

“Big whirls have little whirls that feed on their velocity, and little whirls have lesser whirls and so on to viscosity.”

(L.F. Richardson, 1920)

Kinetic energy cascade

large scales (source) → small scales

→ dissipation (sink)

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Richardson Cascade

“Big whirls have little whirls that feed on their velocity, and little whirls have lesser whirls and so on to viscosity.”

(L.F. Richardson, 1920)

Kinetic energy cascade

large scales (source) → small scales

→ dissipation (sink)

Kolmogorov (1941): scale-invariant, incompressible fluid

E(k) ~ P 2/3 ρ1/3 k—5/3 (Turbulent stationarity)

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Kolmogorov's theory of turbulence(1941)

Take isotropic system: Cascade = Radial momentum transport

k

kx

ky

pump

radial flux

∂t ε(k) = ―∇kp(k)

Energy density ε Energy flux p

Andrey N. Kolmogorov(1903-1987)

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Kolmogorov's theory of turbulence(1941)

Cascade = Transport in momentum space:

Radial energy density E = k2ε [kg s—2]

log E(k)

log klog L-1

pump

3D:

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Kolmogorov's theory of turbulence(1941)

Stationary E-distribution in cascade?

Radial energy density E = k2ε [kg s—2]

log E(k)

log k log η-1log L-1

pump

dump

3D:

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Kolmogorov's theory of turbulence(1941)

Assume self-similarity:

Radial energy density E = k2ε [kg s—2] Radial energy flux P = k2|p| [kg m—1 s—3]

log E(k)

log k

E(k) ~ k—ζ

pump

dump

3D:

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Kolmogorov's theory of turbulence(1941)

Assume self-similarity:

Radial energy density E [kg s—2] Radial energy flux P [kg m—1 s—3]

log E(k)

log k

E(k) ~ P 2/3 ...

pump

dump

Dimensional analysis:

3D:

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Kolmogorov's theory of turbulence(1941)

Scale invariant (self-similar) stationary transport:

Radial energy density E [kg s—2] Radial energy flux P [kg m—1 s—3] Density ρ [kg m—3]

log E(k)

log k

E(k) ~ P 2/3 ρ1/3 k—5/3

pump

dump

Dimensional analysis:

3D:

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Compare: Thermal Equilibrium

Constant energy ε ~ E/k2 (In 3D):

Radial energy density E [kg s—2]

log ε(k)

log k

ε(k) ~ ω n ~ T

(Rayleigh-Jeans: n ~ T/ω )

3D:

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Compare: Thermal Equilibrium

Constant energy ε ~ E/k2 (In 3D):

Radial energy density E [kg s—2]

log E(k)

log k

E(k) ~ ω n k2

~ T k2

(Rayleigh-Jeans: n ~ T/ω )

3D:

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

SummaryScaling stationary solutions:

log E(k)

log k

E(k) ~ k—ζ

n(k) ~ k—κ

pump

dump

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Origin of radial fluxBalance equation for radial flux

k

kx

ky

pump

radial flux

rad. occupation no. n rad. particle flux Q

∂t n(k) = ― ∂k Q(k)

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Origin of radial fluxWith kinetic (Boltzmann) eq.

k

kx

ky

pump

radial flux

∂t n(k) = ― ∂k Q(k)

~ k2 J(k)

Boltzmannscattering integral

rad. occupation no. n rad. particle flux Q

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Kinetic equation

Flow in momentum space from kinetic (Boltzmann) equation:

Scattering integral:

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

To derive scaling Familiarize the...

Critical dynamicsbeyond kinetic theory

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Dynamical field theory

Kinetic (Quantum-Boltzmann) eq.:

Dynamic (Schwinger-Dyson) eq.:

or...

Scattering integral:

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Dynamical field theory

Kinetic (Quantum-Boltzmann) eq.:

Dynamic (Schwinger-Dyson) eq.: (from 2PI effective action)

Scattering integral:

p = ( p0, p):

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Strong turbulence

p = ( p0, p):

2PI to NLO in 1/N: Vertex:

[J. Berges, NPA 699 (02) 847; G. Aarts et al., PRD 66 (02) 45008]

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Strong Turbulence in 2D

momentum p

κ = 4

κ = 4/3κ = 2

nonequilibriumthermalequilibrium

n ~ k -κ

C. Scheppach, J. Berges, TG PRA 81 (10) 033611 J. Berges et al., PRL 101 (08) 041603

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Simulations in 2+1 D (semi-classical)

Remember:

B. Nowak, D. Sexty, TG (unpublished)

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Simulations in 3+1 D (semi-classical)

B. Nowak, D. Sexty, TG (unpublished)

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Simulations in 3+1 D (semi-classical)

B. Nowak, D. Sexty, TG (unpublished)

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Simulations in 3+1 D (semi-classical)

B. Nowak, D. Sexty, TG (unpublished)

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

3D Simulation

relativistic Bose gas

J. Berges, A. Rothkopf, and J. Schmidt, PRL 101 (08) 041603

“ultracold” Bose gas

B. Nowak, D. Sexty, TG (unpublished)

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Simulations in 2+1 D (semi-classical)

Remember:

B. Nowak, D. Sexty, TG (unpublished)

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Simulations in 2+1 D (semi-classical)

Remember:

B. Nowak, D. Sexty, TG (unpublished)

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Simulations in 2+1 D (semi-classical)

Remember:

B. Nowak, D. Sexty, TG (unpublished)

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Simulations in 2+1 D (semi-classical)

Remember:

B. Nowak, D. Sexty, TG (unpublished)

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Turbulence as a fixed point

[Fig.: Berges 08]

The

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Thanks & credits to......my work group in Heidelberg:

Cédric Bodet Matthias KronenwettBoris Nowak Denes SextyMartin TrappeJan Zill

Alexander Branschädel ( Karlsruhe)Stefan Keßler ( LMU München)Christian Scheppach ( Cambridge, UK)Philipp Struck ( Konstanz) Kristan Temme ( Vienna)

...my collaboratorsJürgen Berges (Darmstadt) • Hrvoje Buljan (Zagreb) • Keith Burnett (Oxford/ Sheffield) • David Hutchinson (Otago) • Paul S. Julienne (NIST Gaithersburg) • Thorsten Köhler (Oxford/UCL) • Otto Nachtmann (Heidelberg) • Markus K. Oberthaler (Heidelberg) • Jan M. Pawlowski (Heidelberg) • Robert Pezer (Sisak) • David Roberts (Oxford/Los Alamos) • Janne Ruostekoski (Southampton) • Michael G. Schmidt (Heidelberg) • Marcos Seco (Santiago de Compostela)

LGFG BaWue

€€€...

ExtreMe Matter Institute

Supplementary slides

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Nonthermal Equilibration in a quantum system

M. Rigol, V. Dunjko, V. Yurovsky, M. Olshanii, PRL 98, 050405 (2007)

S. R. Manmana, S. Wessel, R. M. Noack, A. Muramatsu, PRL 98, 210405 (2007)

D. M. Gangardt, M. Pustilnik, PRA 77, 041604(R) (2009)

M. Cazalilla, PRL 97, 156403 (2006)

C. Kollath, A. M. Läuchli, E. Altman, PRL 98, 180601 (2007)

M. Eckstein, M. Kollar, PRL 100, 120404 (2008)

M. Moeckel, S. Kehrein, PRL 100, 175702 (2008)

A. Iucci, M. A. Cazalilla, PRA 80, 063619 (2009)

D. M. Kennes, V. Meden, arXiv:1006.0927v1 [cond-mat.str-el] (2010)

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Integrable Lieb & Liniger model

Lieb-Liniger Bose gas in 1D: [PR 130, 1605 & 1616 (63)]

Solution via Bethe-Ansatz with cusp conditions @ particle contact hyperplanes

c > 0

xi = xj Dirichlet-von Neumann

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Dynamics: H. Buljan, R. Pezer, & TG, PRL 100 (2008)

Integrable Lieb & Liniger model

Lieb-Liniger Bose gas in 1D: [PR 130, 1605 & 1616 (63)]

Solution via Bethe-Ansatz with cusp conditions @ particle contact hyperplanes

c > 0

xi = xj Dirichlet-von Neumann

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Tomonaga-Luttinger Liquid model1D Fermi gas with contact interactions. e.g. Schultz et al. cond-mat/9807366

Bosonize by replacing as follows:

(right/left-moving particle-hole pairs)

particle-holecontinuum

Includeall energies < 0!

k k+q

}εq

TomonagaLuttinger

Lieb & Mattis

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Tomonaga-Luttinger Liquid model

Bosonization ⇒ quadratic Hamiltonian

Quartic fermion interaction

TomonagaLuttinger

Lieb & Mattis

Expect nonthermal evolution after switching on interactions:

Iucci & Cazalilla, 1003.5170 [cond-mat], also Kennes & Meden 1006.0927 [cond-mat]

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Simulations in 2+1 D (semi-classical)

Evolution of mom. distr. of a 2D Bose gas following an interaction quench

B. Nowak, D. Sexty, TG (unpublished)

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Simulations in 2+1 D (semi-classical)

B. Nowak, D. Sexty, TG (unpublished)

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Simulations in 2+1 D (semi-classical)

Remember:

B. Nowak, D. Sexty, TG (unpublished)

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Simulations in 2+1 D (semi-classical)

Remember:

B. Nowak, D. Sexty, TG (unpublished)

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Simulations in 2+1 D (semi-classical)

Remember:

B. Nowak, D. Sexty, TG (unpublished)

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Scaling exponents( in d dimensions )

κ = dConstant P(k) ≡ P Constant Q(p)

κ = d −2/3

n ~ k -κ

C. Scheppach, J. Berges, T. Gasenzer PRA 81 (10) 033611

UV:

IR: κ = d +4 κ = d +2

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Turbulence in a Bose Einstein Condensate

[E.A.L. Henn et al. PRL (09)]

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Turbulence in a Bose Einstein Condensate

[E.A.L. Henn et al. PRL (09)]

[Abu-Shaeer et al. (01)]

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Turbulence in a Bose Einstein Condensate

[N. Berloff & B. Svistunov, PRA (02)] [E.A.L. Henn et al. PRL (09)]

[Abu-Shaeer et al. (01)]

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Wave turbulence

Turbulent thermalisation after universe inflation

[Micha & Tkachev, PRL 90 (03) 121301, PRD 70 (04) 043538]

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Wave turbulence

[Micha & Tkachev, PRL 90 (03) 121301, PRD 70 (04) 043538]

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

To derive scaling Familiarize the...

V.E. Zakharov, V.S. L'vov, G. Falkovich, Kolmogorov Spectra of Turbulence I (Springer, Berlin, 1992)

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

To derive scaling Familiarize the...

V.E. Zakharov, V.S. L'vov, G. Falkovich, Kolmogorov Spectra of Turbulence I (Springer, Berlin, 1992)

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

(Weak) wave turbulence

Flow in momentum space from kinetic (Boltzmann) equation:

∂kP(k) ~ J(k) ⇒ Stationarity if J(k) = 0

Scattering integral:

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

(Weak) wave turbulence

Flow in momentum space from kinetic (Boltzmann) equation:

∂kP(k) ~ J(k) ~ nk3 ⇒ nk ~ P 1/3

⇒ E(k) ~ (Pρ2)1/3 ωk k—7/3

Scattering integral:

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

(Weak) wave turbulence Scaling solutions

Constant energy flux P:

E(k) ~ (Pρ2)1/3 ωk k—7/3

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

(Weak) wave turbulence Scaling solutions

Constant energy flux P:

Constant particle flux Q (P Pk = ωkQ):

E(k) ~ (Pρ2)1/3 ωk k—7/3

E(k) ~ (Qρ2)1/3 ωk4/3

k—7/3

⇒ 2 distinct scaling laws!

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Scaling solutions

Want to look for scaling solutions fulfilling stationarity condition J(p) = 0

Scaling ansatz:

Implies scaling of the single-particle momentum distribution ( ):

( )

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Stationarity Conditionin the full dynamical theory

p = ( p0, p):

(Bosons with 3- and 4-interactions, 2PI diagrams to O(g2)

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Ultraviolet scaling exponent( large p in d dims)

κ = d

κ = d + 4(z ̶ 2 +η)/ 3

Corresponds to constant P(p)

[C. Scheppach, J. Berges, & TG, to be submitted]

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Ultraviolet scaling exponent( large p in d dims)

κ = d −2/3

κ = d + z ̶ 4(2 ̶ η)/ 3

Corresponds to constant Q(p)

[C. Scheppach, J. Berges, & TG, to be submitted]

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Ultraviolet scaling exponent( large p in d dims)

κ = d −2/3

κ = d + z ̶ 4(2 ̶ η)/ 3

Corresponds to constant Q(p)

Not present in general dynamical case!

[C. Scheppach, J. Berges, & TG, to be submitted]

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Scattering integral

Strong turbulence

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Infrared scaling modification

momentum p

κ = 7

κ = 3κ = 2

nonequilibrium

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Stationarity Conditionin the full dynamical theory

p = ( p0, p):

2PI to NLO in 1/N: Vertex:

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

IR scaling exponent( small p in d dims)

κ = d + 4

κ = d + 2z

Corresponds to constant P(p)

[Berges et al., PRL 101 (2008) 041603, C. Scheppach, J. Berges, & TG, to be submitted]

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

IR scaling exponent( small p in d dims)

κ = d + 2

κ = d + z

Corresponds to constant Q(p)

[Berges et al., PRL 101 (2008) 041603, C. Scheppach, J. Berges, & TG, to be submitted]

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

IR scaling exponent( small p in d dims)

κ = d + 2

κ = d + z

Corresponds to constant Q(p)

[Berges et al., PRL 101 (2008) 041603, C. Scheppach, J. Berges, & TG, to be submitted]

Should not be present in general dynamical case either!

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Summary

momentum p

κ = 7

κ = 3κ = 2

nonequilibrium

κ = 3/2 κ = 4

relativistic simulation

[Berges et al., PRL 101 (2008) 041603]

equilibrium

BEC10 Summer School · MPIPKS Dresden · 10. August 2010 · Lecture 3 Thomas Gasenzer

Lewis Fry Richardson, FRS (1881-1953)

Big whirls have little whirls that feed on their velocity,and little whirls have lesser whirls and so on to viscosity.

(L.F. Richardson, The supply of energy from and to Atmospheric Eddies, 1920)

Great fleas have little fleas upon their backs to bite 'em,And little fleas have lesser fleas, and so ad infinitum.And the great fleas themselves, in turn, have greater fleas to go on;While these again have greater still, and greater still, and so on.

(Augustus de Morgan, A Budget of Paradoxes, 1872, p. 370)

So, naturalists observe, a fleaHas smaller fleas that on him prey;And these have smaller still to bite 'em;And so proceed ad infinitum.

(Jonathan Swift: Poetry, a Rhapsody, 1733)